• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1489
  • 473
  • 437
  • 372
  • 104
  • 76
  • 68
  • 34
  • 33
  • 32
  • 28
  • 26
  • 21
  • 18
  • 16
  • Tagged with
  • 3685
  • 1096
  • 753
  • 488
  • 460
  • 451
  • 420
  • 390
  • 389
  • 348
  • 347
  • 328
  • 324
  • 318
  • 317
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Automated and interactive approaches for optimal surface finding based segmentation of medical image data

Sun, Shanhui 01 December 2012 (has links)
Optimal surface finding (OSF), a graph-based optimization approach to image segmentation, represents a powerful framework for medical image segmentation and analysis. In many applications, a pre-segmentation is required to enable OSF graph construction. Also, the cost function design is critical for the success of OSF. In this thesis, two issues in the context of OSF segmentation are addressed. First, a robust model-based segmentation method suitable for OSF initialization is introduced. Second, an OSF-based segmentation refinement approach is presented. For segmenting complex anatomical structures (e.g., lungs), a rough initial segmentation is required to apply an OSF-based approach. For this purpose, a novel robust active shape model (RASM) is presented. The RASM matching in combination with OSF is investigated in the context of segmenting lungs with large lung cancer masses in 3D CT scans. The robustness and effectiveness of this approach is demonstrated on 30 lung scans containing 20 normal lungs and 40 diseased lungs where conventional segmentation methods frequently fail to deliver usable results. The developed RASM approach is generally applicable and suitable for large organs/structures. While providing high levels of performance in most cases, OSF-based approaches may fail in a local region in the presence of pathology or other local challenges. A new (generic) interactive refinement approach for correcting local segmentation errors based on the OSF segmentation framework is proposed. Following the automated segmentation, the user can inspect the result and correct local or regional segmentation inaccuracies by (iteratively) providing clues regarding the location of the correct surface. This expert information is utilized to modify the previously calculated cost function, locally re-optimizing the underlying modified graph without a need to start the new optimization from scratch. For refinement, a hybrid desktop/virtual reality user interface based on stereoscopic visualization technology and advanced interaction techniques is utilized for efficient interaction with the segmentations (surfaces). The proposed generic interactive refinement method is adapted to three applications. First, two refinement tools for 3D lung segmentation are proposed, and the performance is assessed on 30 test cases from 18 CT lung scans. Second, in a feasibility study, the approach is expanded to 4D OSF-based lung segmentation refinement and an assessment of performance is provided. Finally, a dual-surface OSF-based intravascular ultrasound (IVUS) image segmentation framework is introduced, application specific segmentation refinement methods are developed, and an evaluation on 41 test cases is presented. As demonstrated by experiments, OSF-based segmentation refinement is a promising approach to address challenges in medical image segmentation.
132

Vision cognitive : apprentissage supervisé pour la segmentation d'images et de videos

Martin, Vincent 19 December 2007 (has links) (PDF)
Dans cette thèse, nous abordons le problème de la segmentation d'image dans le cadre de la vision cognitive. Plus précisément, nous étudions deux problèmes majeurs dans les systèmes de vision : la sélection d'un algorithme de segmentation et le réglage de ses paramètres selon le contenu de l'image et les besoins de l'application. Nous proposons une méthodologie reposant sur des techniques d'apprentissage pour faciliter la configuration des algorithmes et adapter en continu la tâche de segmentation. Notre première contribution est une procédure d'optimisation générique pour l'extraction automatiquement des paramètres optimaux des algorithmes. L'évaluation de la qualité de la segmentation est faite suivant une segmentation de référence. De cette manière, la tâche de l'utilisateur est réduite à fournir des données de référence pour des images d'apprentissage, comme des segmentations manuelles. Une seconde contribution est une stratégie pour le problème de sélection d'algorithme. Cette stratégie repose sur un jeu d'images d'apprentissage représentatif du problème. La première partie utilise le résultat de l'étape d'optimisation pour classer les algorithmes selon leurs valeurs de performance pour chaque image. La seconde partie consiste à identifier différentes situations à partir du jeu d'images d'apprentissage (modélisation du contexte) et à associer un algorithme paramétré avec chaque situation identifiée. Une troisième contribution est une approche sémantique pour la segmentation d'image. Dans cette approche, nous combinons le résultat des segmentations optimisées avec un processus d'étiquetage des régions. Les labels des régions sont donnés par des classificateurs de régions eux-mêmes entrainés à partir d'exemples annotés par l'utilisateur. Une quatrième contribution est l'implémentation de l'approche et le développement d'un outil graphique dédié à l'extraction, l'apprentissage, et l'utilisation de la connaissance pour la segmentation (modélisation et apprentissage du contexte pour la sélection dynamique d'algorithme de segmentation, optimisation automatique des paramètres, annotations des régions et apprentissage des classifieurs). Nous avons testé notre approche sur deux applications réelles : une application biologique (comptage d'insectes sur des feuilles de rosier) et une application de vidéo surveillance. Pour la première application, la segmentation des insectes obtenue par notre approche est de meilleure qualité qu'une segmentation non-adaptative et permet donc au système de vision de compter les insectes avec une meilleure précision. Pour l'application de vidéo surveillance, la principale contribution de l'approche proposée se situe au niveau de la modélisation du contexte, permettant d'adapter le choix d'un modèle de fond suivant les caractéristiques spatio-temporelles de l'image. Notre approche permet ainsi aux applications de vidéo surveillance d'élargir leur champ d'application aux environnements fortement variables comme les très longues séquences (plusieurs heures) en extérieur. Afin de montrer le potentiel et les limites de notre approche, nous présentons les résultats, une évaluation quantitative et une comparaison avec des segmentations non-adaptative.
133

Méthodes variationnelles pour la segmentation avec application à la réalité augmentée / Variational methods for segmentation with application to augmented reality

Julian, Pauline 12 October 2012 (has links)
Dans cette thèse, nous nous intéressons au problème de la segmentation de portraits numériques. Nous appelons portrait numérique la photographie d’une personne avec un cadre allant grossièrement du gros plan au plan poitrine. Le problème abordé dans ce travail est un cas spécifique de la segmentation d’images où il s’agit notamment de définir précisément la frontière de la région « cheveux ». Ce problème est par essence très délicat car les attributs de la région « cheveux » (géométrie, couleur, texture) présentent une grande variabilité à la fois entre les personnes et au sein de la région. Notre cadre applicatif est un système d’« essayage virtuel » de lunettes à destination du grand public, il n’est pas possible de contrôler les conditions de prise de vue comme l’éclairage de la scène ou la résolution des images, ce qui accroît encore la diculté du problème. L’approche proposée pour la segmentation de portraits numériques est une approche du plus grossier au plus fin procédant par étapes successives. Nous formulons le problème comme celui d’une segmentation multi-régions, en introduisant comme « régions secondaires », les régions adjacentes à la région « cheveux » , c.-à-d. les régions « peau » et « fond ». La méthode est fondée sur l’apparence (appearance-based method) et a comme spécificité le fait de déterminer les descripteurs de régions les plus adaptés à partir d’une base d’images d’apprentissage et d’outils statistiques. À la première étape de la méthode, nous utilisons l’information contextuelle d’un portrait numérique — connaissances a priori sur les relations spatiales entre régions— pour obtenir des échantillons des régions « cheveux », « peau » et « fond ». L’intérêt d’une approche fondée sur l’apparence est de pouvoir s’adapter à la fois aux conditions de prises de vue ainsi qu’aux attributs de chaque régions. Au cours de cette étape, nous privilégions les modèles de forme polygonaux couplés aux contours actifs pour assurer la robustesse du modèle. Lors de la seconde étape, à partir des échantillons détectés à l’étape précédente, nous introduisons un descripteur prenant en compte l’information de couleur et de texture. Nous proposons une segmentation grossière par classification en nous appuyant à nouveau sur l’information contextuelle : locale d’une part grâce aux champs de Markov, globale d’autre part grâce à un modèle a priori de segmentation obtenu par apprentissage qui permet de rendre les résultats plus robustes. La troisième étape ane les résultats en définissant la frontière des « cheveux » comme une région de transition. Cette dernière contient les pixels dont l’apparence provient du mélange de contributions de deux régions (« cheveux »et « peau » ou «fond »). Ces deux régions de transition sont post-traitées par un algorithme de «démélange » (digital matting) pour estimer les coecients de transparence entre « cheveux » et « peau », et entre « cheveux » et « fond ». À l’issue de ces trois étapes, nous obtenons une segmentation précise d’un portrait numérique en trois « calques », contenant en chaque pixel l’information de transparence entre les régions « cheveux », « peau » et « fond ». Les résultats obtenus sur une base d’images de portraits numériques ont mis en évidence les bonnes performances de notre méthode. / In this thesis, we are interested in the problem of the segmentation of digital portraits. We call digital portrait the photography of a person with a frame roughly ranging from the close-up to the chest plane. The problem addressed in this work is a specific case of the segmentation of images where it is especially necessary to define precisely the border of the "hair" region. This problem is inherently very delicate because the attributes of the "hair" region (geometry, color, texture) present an important variability between people and within the region. Our application is a system of "virtual fitting" of glasses for the general audience, it is not possible to control the shooting conditions such as stage lighting or image resolution, which increases the difficulty of the problem. The approach proposed for the segmentation of digital portraits is an approach « coarse to fine », proceeding in successive stages. We formulate the problem as a multi-region segmentation, introducing as "secondary regions" regions adjacent to the "hair" region, ie, the "skin" and "background" regions. The method is based on appearance-based method and has as a specificity the determination of the descriptors of regions most adapted from a database of learning and statistical tools. In the first step of the method, we use the contextual information of a Digital portrait - a priori knowledge about the spatial relations between regions - to obtain samples of the regions "hair", "skin" and "background". The value of an appearance-based approach is to be able to adapt to both the shooting conditions and the attributes of each region. During this stage, we prefer polygonal shape models coupled with active contours to ensure the robustness of the model. In the second step, from the samples detected in the previous step, we introduce a descriptor taking into account the color and texture information. We propose a rough segmentation by classification by relying on the contextual information: local on the one hand thanks to the Markov fields, global on the other hand thanks to an a priori model of segmentation obtained by learning which il allow to obtain robust results. The third stage refines the results by defining the border of "hair" as a transition region. This région contains the pixels whose appearance comes from the mixture of contributions of two regions ("hair" and "skin" or "background"). These two transition regions are post-processed by a digital matting algorithm to estimate the coefficients of transparency between "hair" and "skin", and between "hair" and "background". At the end of these three steps, we obtain a precise segmentation of a digital portrait into three "layers", containing in each pixel the information of transparency between the regions "hair", "skin" and "background". The results obtained on the basis of images of digital portraits have highlighted the good performance of our method.
134

Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters

Monma, Yumi January 2014 (has links)
Este trabalho propõe um algoritmo rápido para segmentação de partes móveis em vídeo, tendo como base a detecção de volumes fechados no espaço tridimensional. O vídeo de entrada é pré-processado com um algoritmo de detecção de bordas baseado em linhas de nível para produzir os objetos. Os objetos detectados são agrupados utilizando uma combinação dos métodos de mean shift clustering e meta-agrupamento. Para diminuir o tempo de computação, somente alguns objetos e quadros são utilizados no agrupamento. Uma vez que a forma de detecção garante que os objetos persistem com o mesmo rótulo em múltiplos quadros, a seleção de quadros impacta pouco no resultado final. Dependendo da aplicação desejada os grupos podem ser refinados em uma etapa de pós-processamento. / This work presents a very fast algorithm to segmentation of moving parts in a video, based on detection of surfaces of the scene with closed contours. The input video is preprocessed with an edge detection algorithm based on level lines to produce the objects. The detected objects are clustered using a combination of mean shift clustering and ensemble clustering. In order decrease even more the computation time required, two methods can be used combined: object filtering by size and selecting only a few frames of the video. Since the detected objects are coherent in time, frame skipping does not affect the final result. Depending on the application the detected clusters can be refined using post processing steps.
135

Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters

Monma, Yumi January 2014 (has links)
Este trabalho propõe um algoritmo rápido para segmentação de partes móveis em vídeo, tendo como base a detecção de volumes fechados no espaço tridimensional. O vídeo de entrada é pré-processado com um algoritmo de detecção de bordas baseado em linhas de nível para produzir os objetos. Os objetos detectados são agrupados utilizando uma combinação dos métodos de mean shift clustering e meta-agrupamento. Para diminuir o tempo de computação, somente alguns objetos e quadros são utilizados no agrupamento. Uma vez que a forma de detecção garante que os objetos persistem com o mesmo rótulo em múltiplos quadros, a seleção de quadros impacta pouco no resultado final. Dependendo da aplicação desejada os grupos podem ser refinados em uma etapa de pós-processamento. / This work presents a very fast algorithm to segmentation of moving parts in a video, based on detection of surfaces of the scene with closed contours. The input video is preprocessed with an edge detection algorithm based on level lines to produce the objects. The detected objects are clustered using a combination of mean shift clustering and ensemble clustering. In order decrease even more the computation time required, two methods can be used combined: object filtering by size and selecting only a few frames of the video. Since the detected objects are coherent in time, frame skipping does not affect the final result. Depending on the application the detected clusters can be refined using post processing steps.
136

Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clusters

Monma, Yumi January 2014 (has links)
Este trabalho propõe um algoritmo rápido para segmentação de partes móveis em vídeo, tendo como base a detecção de volumes fechados no espaço tridimensional. O vídeo de entrada é pré-processado com um algoritmo de detecção de bordas baseado em linhas de nível para produzir os objetos. Os objetos detectados são agrupados utilizando uma combinação dos métodos de mean shift clustering e meta-agrupamento. Para diminuir o tempo de computação, somente alguns objetos e quadros são utilizados no agrupamento. Uma vez que a forma de detecção garante que os objetos persistem com o mesmo rótulo em múltiplos quadros, a seleção de quadros impacta pouco no resultado final. Dependendo da aplicação desejada os grupos podem ser refinados em uma etapa de pós-processamento. / This work presents a very fast algorithm to segmentation of moving parts in a video, based on detection of surfaces of the scene with closed contours. The input video is preprocessed with an edge detection algorithm based on level lines to produce the objects. The detected objects are clustered using a combination of mean shift clustering and ensemble clustering. In order decrease even more the computation time required, two methods can be used combined: object filtering by size and selecting only a few frames of the video. Since the detected objects are coherent in time, frame skipping does not affect the final result. Depending on the application the detected clusters can be refined using post processing steps.
137

Exploring Deep Learning Frameworks for Multiclass Segmentation of 4D Cardiac Computed Tomography / Utforskning av djupinlärningsmetoder för 4D segmentering av hjärtat från datortomografi

Janurberg, Norman, Luksitch, Christian January 2021 (has links)
By combining computed tomography data with computational fluid dynamics, the cardiac hemodynamics of a patient can be assessed for diagnosis and treatment of cardiac disease. The advantage of computed tomography over other medical imaging modalities is its capability of producing detailed high resolution images containing geometric measurements relevant to the simulation of cardiac blood flow. To extract these geometries from computed tomography data, segmentation of 4D cardiac computed tomography (CT) data has been performed using two deep learning frameworks that combine methods which have previously shown success in other research. The aim of this thesis work was to develop and evaluate a deep learning based technique to segment the left ventricle, ascending aorta, left atrium, left atrial appendage and the proximal pulmonary vein inlets. Two frameworks have been studied where both utilise a 2D multi-axis implementation to segment a single CT volume by examining it in three perpendicular planes, while one of them has also employed a 3D binary model to extract and crop the foreground from surrounding background. Both frameworks determine a segmentation prediction by reconstructing three volumes after 2D segmentation in each plane and combining their probabilities in an ensemble for a 3D output.  The results of both frameworks show similarities in their performance and ability to properly segment 3D CT data. While the framework that examines 2D slices of full size volumes produces an overall higher Dice score, it is less successful than the cropping framework at segmenting the smaller left atrial appendage. Since the full size 2D slices also contain background information in each slice, it is believed that this is the main reason for better segmentation performance. While the cropping framework provides a higher proportion of each foreground label, making it easier for the model to identify smaller structures. Both frameworks show success for use in 3D cardiac CT segmentation, and with further research and tuning of each network, even better results can be achieved.
138

Poloautomatická segmentace obrazu / Semi-Automatic Image Segmentation

Horák, Jan January 2015 (has links)
This work describes design and implementation of a tool for creating photomontages. The tool is based on methods of semi-automatic image segmentation. Work outlines problems of segmentation of image data and benefits of interaction with the user. It analyzes different approaches to interactive image segmentation, explains their principles and shows their positive and negative aspects. It also presents advantages and disadvantages of currently used photo-editing applications. Proposes application for creating photomontages which consists of two steps: Extraction of an object from picture and insertion of it into another picture. The first step uses the method of semi-automatic segmentation GrabCut based on the graph theory. The work also includes comparison between application and other applications in which it is possible to create a photomontage, and application tests done by users.
139

Étude de la dynamique des populations du viroïde de la mosaïque latente du pêcher par séquençage à haut débit et segmentation

Glouzon, Jean-Pierre January 2012 (has links)
Les viroïdes sont des agents pathogènes responsables de maladies affectant les plantes telles que l'avocatier, le pêcher, la tomate, la pomme dé terre, etc. Parce qu'ils dégradent la qualité des fruits et des légumes qu'ils infectent, les viroïdes sont la cause de la perte d'environ 50 % de la production mondiale des cultures touchées. La compréhension des mécanismes couvrant l'infection aux viroïdes constitue un enjeu économique majeur visant l'amélioration de la productivité, dans l'exploitation de ces plantes. Cette étude aborde l'analyse des processus liés à l'infection aux viroïdes par la découverte de nouveaux aspects caractérisant la variabilité génétique du viroïde de la mosaïque latente du pêcher (PLMVd). Elle décrit la dynamique des populations de PLMVd. La grande variabilité de PLMVd, expliquée par un fort taux de mutations, implique la génération de séquences diverses et variées, prenant la forme de nuages. Notre approche pour comprendre cette variabilité génétique de PLMVd consiste à infecter un pêcher à partir d'une seule séquence de PLMVd, puis à en extraire les séquences et analyser leurs caractéristiques intrinsèques par une nouvelle méthode bio-informatique. À notre connaissance, notre étude, à ce jour, est la première à utiliser les récentes techniques de séquençage à haut débit, à des fins d'analyses des viroïdes. La structure relativement simple des viroïdes, brin d'ARN circulaire d'environ 240 à 400 nucléotides, leur confère l'avantage de pouvoir être séquencé dans leur longueur totale par le séquençage à haut débit. Ce dernier couvre de grands volumes de données biologiques, ce qui convient pour séquencer les nuages de séquences qu'on peut retrouver au sein de la population de PLMVd. En bio-informatique, il existe de nombreux algorithmes permettant de comparer des séquences pour en extraire de l'information. L'un des défis majeurs de ces algorithmes est la prise en charge efficace et rapide de quantité de données en constante croissance. Dans le cadre de notre étude, le volume de séquences généré par PLMVd rend impraticable l'application des algorithmes d'alignement pour comparer les séquences et en estimer leurs similarités. D'autres algorithmes tels que ceux basés sur les N-grammes impliquent une perte partielle de l'information contenue dans les séquences. Nous avons donc utilisé une mesure de similarité basée sur le modèle de probabilité conditionnelle (CPD) qui nous permet d'une part, de conserver l'information sous forme de patrons (sous-séquences) contenus dans les séquences, et d'autre part, d'éviter l'alignement de séquences tout en comparant directement chaque séquence avec un ensemble de séquences. Le modèle CPD est intégré dans un nouvel algorithme de segmentation pour les séquences catégoriques, appelé DHCS. Cette étude révèle de nouveaux aspects dans la variabilité génétique de PLMVd. En effet, elle nous a permis d'une part d'extraire des familles de séquences caractérisées par des mutations spécifiques, puis d'autre part, de représenter la distribution de ces mutations dans une arborescence. Par la suite, elle a favorisé l'observation de mutations localisées dans le noyau d'un motif particulier, nommé le ribozyme en tête de marteau des séquences, servant à l'amélioration de l'adaptation de PLMVd. Celui-ci est effectivement sujet à mutations parce que la séquence inoculée au pêcher après 6 mois d'infections n'a pas été retrouvée et que le nombre de mutations enregistrées varie de 2 à 51. Des deux librairies obtenues, nous avons répertorié 1125 et 1061 séquences pour un total de 2186 nouvelles séquences de PLMVd. Seules 300 séquences étaient connues à ce jour. Nous avons observé que les séquences possèdent, selon la librairie, en moyenne 4.6 et 6.3 mutations par rapport à la séquence inoculée. Certaines d'entre elles ont jusqu'à 20 % de dissimilarité par rapport à la séquence inoculée, ce qui est considérable. Grâce à DHCS, les différentes séquences ont pu être groupées en familles, au nombre de 7 et 8 selon la librairie.
140

Market segmentation and dual-listed stock price premium - an empirical investigation of the Chinese stock market

Liang, Jing January 2009 (has links)
This thesis comprises, firstly, a careful and detailed description of the institutional workings of the Chinese stock market; secondly, a literature review of the Chinese segmented markets and dual-listed shares price premium; and thirdly, three evidence-based contributions designed to cast new light on the Chinese A-shares premium puzzle. Publicly-listed firms in China, under certain criteria, can issue two different types of shares, namely A-shares and B-shares, to local and foreign investors respectively. These shares carry the same rights and obligations, but are however priced differently due to market segmentation. After a review of the literature on determinants of the premium, the first contribution offers a complementary explanation. I propose that the premium reflects the difference in valuation preferences between the local and foreign investors, i.e., local investors pay more attention to stock liquidity, while foreign investors pay more attention to firm’s intrinsic value, and so firms having more favorable fundamentals tend to have lower premia. The second contribution involves the examination of a controversial question that which investor group is better informed about local assets, by testing the direction of information flows between the A- and B-shares markets. Both time series methods, and panel data techniques which are used for the first time in this context, are employed, in order to get a distinct and more insightful picture against the current literature. The third contribution compares and contrasts institutional settings of China, Singapore and Thailand which have similar market segmentation and dual-listing systems; examines whether or not the premia in the three countries are caused by same factors; and tries to answer why foreign investors in China pay less, rather than more, as commonly observed in other segmented markets, for identical assets. It provides the first cross-country comparison evidence after 1999 with updated data.

Page generated in 0.1067 seconds