431 |
Impact perceptuel d'une mise à zéro des segments plosifs de paroleSantini, Vincent January 2016 (has links)
En traitement du signal audio, les plosives sont des sons de parole très importants au regard de l’intelligibilité et de la qualité. Les plosives sont cependant difficiles à modéliser à l’aide des techniques usuelles (prédiction linéaire et codage par transformée), à cause de leur dynamique propre importante et à cause de leur nature non prédictible.
Cette étude présente un exemple de système complet capable de détecter, segmenter, et altérer les plosives dans un flux de parole. Ce système est utilisé afin de vérifier la validité de l’hypothèse suivante : La phase d’éclatement (de burst) des plosives peut être mise à zéro, de façon perceptuellement équivalente.
L’impact sur la qualité subjective de cette transformation est évalué sur une banque de phrases enregistrées. Les résultats de cette altération hautement destructive des signaux tendent à montrer que l’impact perceptuel est mineur. Les implications de ces résultats pour le codage de la parole sont abordées.
|
432 |
3D multiresolution statistical approaches for accelerated medical image and volume segmentationAl Zu'bi, Shadi Mahmoud January 2011 (has links)
Medical volume segmentation got the attraction of many researchers; therefore, many techniques have been implemented in terms of medical imaging including segmentations and other imaging processes. This research focuses on an implementation of segmentation system which uses several techniques together or on their own to segment medical volumes, the system takes a stack of 2D slices or a full 3D volumes acquired from medical scanners as a data input. Two main approaches have been implemented in this research for segmenting medical volume which are multi-resolution analysis and statistical modeling. Multi-resolution analysis has been mainly employed in this research for extracting the features. Higher dimensions of discontinuity (line or curve singularity) have been extracted in medical images using a modified multi-resolution analysis transforms such as ridgelet and curvelet transforms. The second implemented approach in this thesis is the use of statistical modeling in medical image segmentation; Hidden Markov models have been enhanced here to segment medical slices automatically, accurately, reliably and with lossless results. But the problem with using Markov models here is the computational time which is too long. This has been addressed by using feature reduction techniques which has also been implemented in this thesis. Some feature reduction and dimensionality reduction techniques have been used to accelerate the slowest block in the proposed system. This includes Principle Components Analysis, Gaussian Pyramids and other methods. The feature reduction techniques have been employed efficiently with the 3D volume segmentation techniques such as 3D wavelet and 3D Hidden Markov models. The system has been tested and validated using several procedures starting at a comparison with the predefined results, crossing the specialists’ validations, and ending by validating the system using a survey filled by the end users explaining the techniques and the results. This concludes that Markovian models segmentation results has overcome all other techniques in most patients’ cases. Curvelet transform has been also proved promising segmentation results; the end users rate it better than Markovian models due to the long time required with Hidden Markov models.
|
433 |
Image Segmentation and Analysis for Automated Classification of Traumatic Pelvic InjuriesVasilache, Simina 26 April 2010 (has links)
In the past decades, technical advances have allowed for the collection and storage of more types and larger quantities of medical data. The increase in the volume of existing medical data has increased the need for processing and analyzing such data. Medical data holds information that is invaluable for diagnostic as well as treatment planning purposes. Presently, a large portion of the data is not optimally used towards medical decisions because information contained in the data is inaccessible through simple human inspection, or traditional computational methods. In the field of trauma medicine, where caregivers are frequently confronted with situations where they need to make rapid decisions based on large amounts of information, the need for reliable, fast and automated computational methods for decision support systems is stringent. Such methods could process and analyze, in a timely fashion, all available medical data and provide caretakers with recommendations/predictions for both patient diagnostic and treatment planning. Presently however, even extracting features that are known to be useful for diagnosis, like presence and location of hemorrhage and fracture, is not easily achievable in automatic manner. Trauma is the main cause of death among Americans age 40 and younger; hence, it has become a national priority. A computer-aided decision making system capable of rapidly analyzing all data available for a patient and forming reliable recommendations for physicians can greatly impact the quality of care provided to patients. Such a system would also reduce the overall costs involved in patient care as it helps in optimizing the decisions, avoiding unnecessary procedures, and customizing treatments for individual patients. Among different types of trauma with a high impact on the lives of Americans, traumatic pelvic injuries, which often occur in motor vehicle accidents and in falls, have had a tremendous toll on both human lives and healthcare costs in the United States. The present project has developed automated computational methods and algorithms to analyze pelvic CT images and extract significant features describing the severity of injuries. Such a step is of great importance as every CT scan consists of tens of slices that need to be closely examined. This method can automatically extract information hidden in CT images and therefore reduce the time of the examination. The method identifies and signals areas of potential abnormality and allows the user to decide upon the action to be taken (e.g. further examination of the image and/or area and neighboring images in the scan). The project also initiates the design of a system that combines the features extracted from biomedical signals and images with information such as injury scores, injury mechanism and demographic information in order to detect the presence and the severity of Traumatic Pelvic Injuries and to provide recommendations for diagnosis and treatment. The recommendations are provided in form of grammatical rules, allowing physicians to explore the reasoning behind these assessments.
|
434 |
Image Processing Algorithms for Diagnostic Analysis of MicrocirculationDemir, Sumeyra Ummuhan 10 August 2010 (has links)
Microcirculation has become a key factor for the study and assessment of tissue perfusion and oxygenation. Detection and assessment of the microvasculature using videomicroscopy from the oral mucosa provides a metric on the density of blood vessels in each single frame. Information pertaining to the density of these microvessels within a field of view can be used to quantitatively monitor and assess the changes occurring in tissue oxygenation and perfusion over time. Automated analysis of this information can be used for real-time diagnostic and therapeutic planning of a number of clinical applications including resuscitation. The objective of this study is to design an automated image processing system to segment microvessels, estimate the density of blood vessels in video recordings, and identify the distribution of blood flow. The proposed algorithm consists of two main stages: video processing and image segmentation. The first step of video processing is stabilization. In the video stabilization step, block matching is applied to the video frames. Similarity is measured by cross-correlation coefficients. The main technique used in the segmentation step is multi-thresholding and pixel verification based on calculated geometric and contrast parameters. Segmentation results and differences of video frames are then used to identify the capillaries with blood flow. After categorizing blood vessels as active or passive, according to the amount of blood flow, quantitative measures identifying microcirculation are calculated. The algorithm is applied to the videos obtained using Microscan Side-stream Dark Field (SDF) imaging technique captured from healthy and critically ill humans/animals. Segmentation results were compared and validated using a blind detailed inspection by experts who used a commercial semi-automated image analysis software program, AVA (Automated Vascular Analysis). The algorithm was found to extract approximately 97% of functionally active capillaries and blood vessels in every frame. The aim of this study is to eliminate the human interaction, increase accuracy and reduce the computation time. The proposed method is an entirely automated process that can perform stabilization, pre-processing, segmentation, and microvessel identification without human intervention. The method may allow for assessment of microcirculatory abnormalities occurring in critically ill and injured patients including close to real-time determination of the adequacy of resuscitation.
|
435 |
Segmentation and Fracture Detection in CT Images for Traumatic Pelvic InjuriesWu, Jie 20 April 2012 (has links)
In recent decades, more types and quantities of medical data have been collected due to advanced technology. A large number of significant and critical information is contained in these medical data. High efficient and automated computational methods are urgently needed to process and analyze all available medical data in order to provide the physicians with recommendations and predictions on diagnostic decisions and treatment planning. Traumatic pelvic injury is a severe yet common injury in the United States, often caused by motor vehicle accidents or fall. Information contained in the pelvic Computed Tomography (CT) images is very important for assessing the severity and prognosis of traumatic pelvic injuries. Each pelvic CT scan includes a large number of slices. Meanwhile, each slice contains a large quantity of data that may not be thoroughly and accurately analyzed via simple visual inspection with the desired accuracy and speed. Hence, a computer-assisted pelvic trauma decision-making system is needed to assist physicians in making accurate diagnostic decisions and determining treatment planning in a short period of time. Pelvic bone segmentation is a vital step in analyzing pelvic CT images and assisting physicians with diagnostic decisions in traumatic pelvic injuries. In this study, a new hierarchical segmentation algorithm is proposed to automatically extract multiplelevel bone structures using a combination of anatomical knowledge and computational techniques. First, morphological operations, image enhancement, and edge detection are performed for preliminary bone segmentation. The proposed algorithm then uses a template-based best shape matching method that provides an entirely automated segmentation process. This is followed by the proposed Registered Active Shape Model (RASM) algorithm that extracts pelvic bone tissues using more robust training models than the Standard ASM algorithm. In addition, a novel hierarchical initialization process for RASM is proposed in order to address the shortcoming of the Standard ASM, i.e. high sensitivity to initialization. Two suitable measures are defined to evaluate the segmentation results: Mean Distance and Mis-segmented Area to quantify the segmentation accuracy. Successful segmentation results indicate effectiveness and robustness of the proposed algorithm. Comparison of segmentation performance is also conducted using both the proposed method and the Snake method. A cross-validation process is designed to demonstrate the effectiveness of the training models. 3D pelvic bone models are built after pelvic bone structures are segmented from consecutive 2D CT slices. Automatic and accurate detection of the fractures from segmented bones in traumatic pelvic injuries can help physicians detect the severity of injuries in patients. The extraction of fracture features (such as presence and location of fractures) as well as fracture displacement measurement, are vital for assisting physicians in making faster and more accurate decisions. In this project, after bone segmentation, fracture detection is performed using a hierarchical algorithm based on wavelet transformation, adaptive windowing, boundary tracing and masking. Also, a quantitative measure of fracture severity based on pelvic CT scans is defined and explored. The results are promising, demonstrating that the proposed method not only capable of automatically detecting both major and minor fractures, but also has potentials to be used for clinical applications.
|
436 |
Automatic detection of human skin in two-dimensional and complex imageryChenaoua, Kamal S. January 2015 (has links)
No description available.
|
437 |
Résumé automatique de textes juridiquesFarzindar, Atefeh January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
438 |
Segmentation of Bones in 3D CT Images / Segmentation of Bones in 3D CT ImagesKrčah, Marcel January 2011 (has links)
Accurate and automatic segmentation techniques that do not require any explicit prior model have been of high interest in the medical community. We propose a fully-automatic method for segmenting the femur from 3D Computed Tomography scans, based on the graph-cut segmentation framework and the bone boundary enhancement filter analyzing second-order local structures. The presented algorithm is evaluated in large-scale experiments, conducted on 197 CT volumes, and compared to other three automatic bone segmentation methods. Out of the four tested approaches, the proposed algorithm achieved most accurate results and segmented the femur correctly in 81% of the cases.
|
439 |
Segmentace obrazů listů dřevin / Segmentation of images with leaves of woody speciesValchová, Ivana January 2016 (has links)
The thesis focuses on segmentation of images with leaves of woody species. The main aim was to investigate existing image segmentation methods, choose suitable method for given data and implement it. Inputs are scanned leaves and photographs of various quality. The thesis summarizes the general methods of image segmentation and describes algorithm that gives us the best results. Based on the histogram, the algorithm decides whether the input is of sufficient quality and can be segmented by Otsu algorithm or is not and should be segmented using GrowCut algorithm. Next, the image is improved by morphological closing and holes filling. Finally, only the largest object is left. Results are illustrated using generated output images. Powered by TCPDF (www.tcpdf.org)
|
440 |
Fast segmentation of the LV myocardium in real-time 3D echocardiographyVerhoek, Michael January 2011 (has links)
Heart disease is a major cause of death in western countries. In order to diagnose and monitor heart disease, 3D echocardiography is an important tool, as it provides a fast, relatively low-cost, portable and harmless way of imaging the moving heart. Segmentation of cardiac walls is an indispensable method of obtaining quantitative measures of heart function. However segmentation of ultrasound images has its challenges: image quality is often relatively low and current segmentation methods are often not fast. It is desirable to make the segmentation technique as fast as possible, making quantitative heart function measures available at the time of recording. In this thesis, we test two state-of-the-art fast segmentation techniques to address this issue; furthermore, we develop a novel technique for finding the best segmentation propagation strategy between points of time in a cardiac image sequence. The first fast method is Graph Cuts (GC), an energy minimisation technique that represents the image as a graph. We test this method on static 3D echocardiography to segment the myocardium, varying the importance of the regulariser function. We look at edge measures, position constraints and tissue characterisation and find that GC is relatively fast and accurate. The second fast method is Random Forests (RFos), a discriminative classifier using binary decision trees, used in machine learning. To our knowledge, we are the first to test this method for myocardial segmentation on 2D and 3D static echocardiography. We investigate the number of trees, image features used, some internal parameters, and compare with intensity thresholding. We conclude that RFos are very fast and more accurate than GC segmentation. The static RFo method is subsequently applied to all time frames. We describe a novel optical flow based propagation technique that improves the static results by propagating the results from well-performing time frames to less-performing frames. We describe a learning algorithm that learns for each frame which propagation strategy is best. Furthermore, we look at the influence of the number of images and of the training set available per tree, and we compare against other methods that use motion information. Finally, we perform the same propagation learning method on the static GC results, concluding that the propagation method improves the static results in this case as well. We compare the dynamic GC results with the dynamic RFo results and find that RFos are more accurate and faster than GC.
|
Page generated in 0.0892 seconds