• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generic instance segmentation for object-oriented bin-picking / Segmentation en instances génériques pour le dévracage orienté objet

Grard, Matthieu 20 May 2019 (has links)
Le dévracage robotisé est une tâche industrielle en forte croissance visant à automatiser le déchargement par unité d’une pile d’instances d'objet en vrac pour faciliter des traitements ultérieurs tels que la formation de kits ou l’assemblage de composants. Cependant, le modèle explicite des objets est souvent indisponible dans de nombreux secteurs industriels, notamment alimentaire et automobile, et les instances d'objet peuvent présenter des variations intra-classe, par exemple en raison de déformations élastiques.Les techniques d’estimation de pose, qui nécessitent un modèle explicite et supposent des transformations rigides, ne sont donc pas applicables dans de tels contextes. L'approche alternative consiste à détecter des prises sans notion explicite d’objet, ce qui pénalise fortement le dévracage lorsque l’enchevêtrement des instances est important. Ces approches s’appuient aussi sur une reconstruction multi-vues de la scène, difficile par exemple avec des emballages alimentaires brillants ou transparents, ou réduisant de manière critique le temps de cycle restant dans le cadre d’applications à haute cadence.En collaboration avec Siléane, une entreprise française de robotique industrielle, l’objectif de ce travail est donc de développer une solution par apprentissage pour la localisation des instances les plus prenables d’un vrac à partir d’une seule image, en boucle ouverte, sans modèles d'objet explicites. Dans le contexte du dévracage industriel, notre contribution est double.Premièrement, nous proposons un nouveau réseau pleinement convolutionnel (FCN) pour délinéer les instances et inférer un ordre spatial à leurs frontières. En effet, les méthodes état de l'art pour cette tâche reposent sur deux flux indépendants, respectivement pour les frontières et les occultations, alors que les occultations sont souvent sources de frontières. Plus précisément, l'approche courante, qui consiste à isoler les instances dans des boîtes avant de détecter les frontières et les occultations, se montre inadaptée aux scénarios de dévracage dans la mesure où une région rectangulaire inclut souvent plusieurs instances. A contrario, notre architecture sans détection préalable de régions détecte finement les frontières entre instances, ainsi que le bord occultant correspondant, à partir d'une représentation unifiée de la scène.Deuxièmement, comme les FCNs nécessitent de grands ensembles d'apprentissage qui ne sont pas disponibles dans les applications de dévracage, nous proposons une procédure par simulation pour générer des images d'apprentissage à partir de moteurs physique et de rendu. Plus précisément, des vracs d'instances sont simulés et rendus avec les annotations correspondantes à partir d'ensembles d'images de texture et de maillages auxquels sont appliquées de multiples déformations aléatoires. Nous montrons que les données synthétiques proposées sont vraisemblables pour des applications réelles au sens où elles permettent l'apprentissage de représentations profondes transférables à des données réelles. A travers de nombreuses expériences sur une maquette réelle avec robot, notre réseau entraîné sur données synthétiques surpasse la méthode industrielle de référence, tout en obtenant des performances temps réel. L'approche proposée établit ainsi une nouvelle référence pour le dévracage orienté-objet sans modèle d'objet explicite. / Referred to as robotic random bin-picking, a fast-expanding industrial task consists in robotizing the unloading of many object instances piled up in bulk, one at a time, for further processing such as kitting or part assembling. However, explicit object models are not always available in many bin-picking applications, especially in the food and automotive industries. Furthermore, object instances are often subject to intra-class variations, for example due to elastic deformations.Object pose estimation techniques, which require an explicit model and assume rigid transformations, are therefore not suitable in such contexts. The alternative approach, which consists in detecting grasps without an explicit notion of object, proves hardly efficient when the object geometry makes bulk instances prone to occlusion and entanglement. These approaches also typically rely on a multi-view scene reconstruction that may be unfeasible due to transparent and shiny textures, or that reduces critically the time frame for image processing in high-throughput robotic applications.In collaboration with Siléane, a French company in industrial robotics, we thus aim at developing a learning-based solution for localizing the most affordable instance of a pile from a single image, in open loop, without explicit object models. In the context of industrial bin-picking, our contribution is two-fold.First, we propose a novel fully convolutional network (FCN) for jointly delineating instances and inferring the spatial layout at their boundaries. Indeed, the state-of-the-art methods for such a task rely on two independent streams for boundaries and occlusions respectively, whereas occlusions often cause boundaries. Specifically, the mainstream approach, which consists in isolating instances in boxes before detecting boundaries and occlusions, fails in bin-picking scenarios as a rectangle region often includes several instances. By contrast, our box proposal-free architecture recovers fine instance boundaries, augmented with their occluding side, from a unified scene representation. As a result, the proposed network outperforms the two-stream baselines on synthetic data and public real-world datasets.Second, as FCNs require large training datasets that are not available in bin-picking applications, we propose a simulation-based pipeline for generating training images using physics and rendering engines. Specifically, piles of instances are simulated and rendered with their ground-truth annotations from sets of texture images and meshes to which multiple random deformations are applied. We show that the proposed synthetic data is plausible for real-world applications in the sense that it enables the learning of deep representations transferable to real data. Through extensive experiments on a real-world robotic setup, our synthetically trained network outperforms the industrial baseline while achieving real-time performances. The proposed approach thus establishes a new baseline for model-free object-oriented bin-picking.
2

Towards meaningful and data-efficient learning : exploring GAN losses, improving few-shot benchmarks, and multimodal video captioning

Huang, Gabriel 09 1900 (has links)
Ces dernières années, le domaine de l’apprentissage profond a connu des progrès énormes dans des applications allant de la génération d’images, détection d’objets, modélisation du langage à la réponse aux questions visuelles. Les approches classiques telles que l’apprentissage supervisé nécessitent de grandes quantités de données étiquetées et spécifiques à la tâches. Cependant, celles-ci sont parfois coûteuses, peu pratiques, ou trop longues à collecter. La modélisation efficace en données, qui comprend des techniques comme l’apprentissage few-shot (à partir de peu d’exemples) et l’apprentissage self-supervised (auto-supervisé), tentent de remédier au manque de données spécifiques à la tâche en exploitant de grandes quantités de données plus “générales”. Les progrès de l’apprentissage profond, et en particulier de l’apprentissage few-shot, s’appuient sur les benchmarks (suites d’évaluation), les métriques d’évaluation et les jeux de données, car ceux-ci sont utilisés pour tester et départager différentes méthodes sur des tâches précises, et identifier l’état de l’art. Cependant, du fait qu’il s’agit de versions idéalisées de la tâche à résoudre, les benchmarks sont rarement équivalents à la tâche originelle, et peuvent avoir plusieurs limitations qui entravent leur rôle de sélection des directions de recherche les plus prometteuses. De plus, la définition de métriques d’évaluation pertinentes peut être difficile, en particulier dans le cas de sorties structurées et en haute dimension, telles que des images, de l’audio, de la parole ou encore du texte. Cette thèse discute des limites et des perspectives des benchmarks existants, des fonctions de coût (training losses) et des métriques d’évaluation (evaluation metrics), en mettant l’accent sur la modélisation générative - les Réseaux Antagonistes Génératifs (GANs) en particulier - et la modélisation efficace des données, qui comprend l’apprentissage few-shot et self-supervised. La première contribution est une discussion de la tâche de modélisation générative, suivie d’une exploration des propriétés théoriques et empiriques des fonctions de coût des GANs. La deuxième contribution est une discussion sur la limitation des few-shot classification benchmarks, certains ne nécessitant pas de généralisation à de nouvelles sémantiques de classe pour être résolus, et la proposition d’une méthode de base pour les résoudre sans étiquettes en phase de testing. La troisième contribution est une revue sur les méthodes few-shot et self-supervised de détection d’objets , qui souligne les limites et directions de recherche prometteuses. Enfin, la quatrième contribution est une méthode efficace en données pour la description de vidéo qui exploite des jeux de données texte et vidéo non supervisés. / In recent years, the field of deep learning has seen tremendous progress for applications ranging from image generation, object detection, language modeling, to visual question answering. Classic approaches such as supervised learning require large amounts of task-specific and labeled data, which may be too expensive, time-consuming, or impractical to collect. Data-efficient methods, such as few-shot and self-supervised learning, attempt to deal with the limited availability of task-specific data by leveraging large amounts of general data. Progress in deep learning, and in particular, few-shot learning, is largely driven by the relevant benchmarks, evaluation metrics, and datasets. They are used to test and compare different methods on a given task, and determine the state-of-the-art. However, due to being idealized versions of the task to solve, benchmarks are rarely equivalent to the original task, and can have several limitations which hinder their role of identifying the most promising research directions. Moreover, defining meaningful evaluation metrics can be challenging, especially in the case of high-dimensional and structured outputs, such as images, audio, speech, or text. This thesis discusses the limitations and perspectives of existing benchmarks, training losses, and evaluation metrics, with a focus on generative modeling—Generative Adversarial Networks (GANs) in particular—and data-efficient modeling, which includes few-shot and self-supervised learning. The first contribution is a discussion of the generative modeling task, followed by an exploration of theoretical and empirical properties of the GAN loss. The second contribution is a discussion of a limitation of few-shot classification benchmarks, which is that they may not require class semantic generalization to be solved, and the proposal of a baseline method for solving them without test-time labels. The third contribution is a survey of few-shot and self-supervised object detection, which points out the limitations and promising future research for the field. Finally, the fourth contribution is a data-efficient method for video captioning, which leverages unsupervised text and video datasets, and explores several multimodal pretraining strategies.

Page generated in 0.1537 seconds