1 |
Deux approches de segmentation temps-fréquence : détection par modèle statistique et extraction de contour par le champ de vecteurs de réallocationMillioz, Fabien 16 September 2009 (has links) (PDF)
Les représentation temps-fréquence montrent l'évolution spectral d'un signal dans le temps. L'objectif de ces travaux de recherche est de proposer deux principes de segmentation du plan temps-fréquence, cherchant à déterminer quelles sont les zones temps-fréquence présentant un intérêt relatif au signal analysé.<br /><br />La première méthode s'appuie sur une méthode statistique, modélisant le signal analysé par un signal d'intérêt à segmenter perturbé par un bruit blanc gaussien additif de variance inconnue. Le but est de déterminer le support temps-fréquence, ensemble des points sur lesquels l'énergie du signal à segmenter est répartie. Une détection de type Neyman-Pearson à probabilité de fausse alarme fixée permet de détecter les points temps-fréquence contenant du signal, à niveau de bruit connu. L'algorithme proposé est itératif, estimant le niveau de bruit à partir des points non segmentés, ce niveau de bruit servant à détecter de nouveaux points contenant du signal. Un critère basé sur le kurtosis spectral des points non segmentés permet de définir l'arrêt des itérations.<br /><br />La seconde méthode est basée sur le principe de la réallocation du spectrogramme, en tant que source d'information sur le spectrogramme. La réallocation déplace l'énergie du spectrogramme sur le centre de gravité local de l'énergie. Aux frontière d'un motif temps-fréquence, l'énergie sera déplacée vers l'intérieur du motif. Ainsi, les vecteur<br />s de réallocation, décrivant le déplacement de l'énergie du pectrogramme par la réallocation, sont localement parallèles sur la frontière d'un motif. Nous définissons alors un « degré de parallélisme » pour chaque vecteur, égal au nombre de ses vecteurs voisins qui lui sont parallèles. Un algorithme de type suivi de crête, parcourant le plan temps-fréquence en suivant les maximums de ce degré de parallélisme, construit alors un contour entourant le motif temps-fréquence.
|
2 |
Contribution des familles exponentielles en traitement des images / Contribution of the exponential families to image processingBen Arab, Taher 26 April 2014 (has links)
Cette thèse est consacrée à l'évaluation des familles exponentielles pour les problèmes de la modélisation des bruits et de la segmentation des images couleurs. Dans un premier temps, nous avons développé une nouvelle caractérisation des familles exponentielles naturelles infiniment divisible basée sur la fonction trace de la matrice de variance covariance associée. Au niveau application, cette nouvelle caractérisation a permis de détecter la nature de la loi d'un bruit additif associé à un signal où à une image couleur. Dans un deuxième temps, nous avons proposé un nouveau modèle statistique paramétrique mulltivarié basé sur la loi de Riesz. La loi de ce nouveau modèle est appelée loi de la diagonale modifiée de Riesz. Ensuite, nous avons généralisé ce modèle au cas de mélange fini de lois. Enfin, nous avons introduit un algorithme de segmentation statistique d'image ouleur, à travers l'intégration de la méthode des centres mobiles (K-means) au niveau de l'initialisation pour une meilleure définition des classes de l'image et l'algorithme EM pour l'estimation des différents paramètres de chaque classe qui suit la loi de la diagonale modifiée de la loi de Riesz. / This thesis is dedicated to the evaluation of the exponential families for the problems of the noise modeling and the color images segmentation. First, we developed a new characterization of the infinitely divisible natural exponential families based on the trace function of the associated variance-covariance matrix. At the application level, this new characterization allowed to detect the nature of the law of an additive noise associated with a signal or with a color image. Second, we proposed a new parametric multivariate statistical model based on Riesz's distribution. The law of this new model is called the modified diagonal Riesz distribution. Then we generalized this model in the case of a finished mixture of distibution. Finally we introduced an algorithm of statistical segmentation of color images through the integration of the k-means method at the level of the initialization for a better definition of the image classes and the algorithm EM for the estimation of the different parameters of every class which follows the modified diagonal Riesz distribution.
|
3 |
Contribution des familles exponentielles en traitement des imagesBen Arab, Taher 26 April 2014 (has links) (PDF)
Cette thèse est consacrée à l'évaluation des familles exponentielles pour les problèmes de la modélisation des bruits et de la segmentation des images couleurs. Dans un premier temps, nous avons développé une nouvelle caractérisation des familles exponentielles naturelles infiniment divisible basée sur la fonction trace de la matrice de variance covariance associée. Au niveau application, cette nouvelle caractérisation a permis de détecter la nature de la loi d'un bruit additif associé à un signal où à une image couleur. Dans un deuxième temps, nous avons proposé un nouveau modèle statistique paramétrique mulltivarié basé sur la loi de Riesz. La loi de ce nouveau modèle est appelée loi de la diagonale modifiée de Riesz. Ensuite, nous avons généralisé ce modèle au cas de mélange fini de lois. Enfin, nous avons introduit un algorithme de segmentation statistique d'image ouleur, à travers l'intégration de la méthode des centres mobiles (K-means) au niveau de l'initialisation pour une meilleure définition des classes de l'image et l'algorithme EM pour l'estimation des différents paramètres de chaque classe qui suit la loi de la diagonale modifiée de la loi de Riesz.
|
4 |
Détection robuste de signaux acoustiques de mammifères marins / Robust detection of the acoustic signals of marine mammalsDadouchi, Florian 08 October 2014 (has links)
Les océans subissent des pressions d'origine anthropique particulièrement fortes comme la surpêche, la pollution physico-chimique, et le bruit rayonné par les activités industrielles et militaires. Cette thèse se place dans un contexte de compréhension de l'impact du bruit rayonné dans les océans sur les mammifères marins. L'acoustique passive joue donc un rôle fondamental dans ce problème. Ce travail aborde la tâche de détection de signatures acoustiques de mammifères marins dans le spectrogramme. Cette tâche est difficile pour deux raisons : 1. le bruit océanique a une structure complexe (non-stationnaire, coloré), 2. les signaux de mammifères marins sont inconnus et possèdent eux aussi une structure complexe (non-stationnaires bande étroite et/ou impulsionnels). Le problème doit donc être résolu de manière locale en temps-fréquence, et ne pas faire d'hypothèse a priori sur le signal. Des détecteurs statistiques basés uniquement sur la connaissance des statistiques du bruit dans le spectrogramme existent, mais souffrent deux lacunes : 1. leurs performances en terme de probabilité de fausse alarme/ probabilité de détection se dégradent fortement à faible rapport signal à bruit, et 2. ils ne sont pas capables de séparer les signaux à bande étroite des signaux impulsionnels. Ce travail apporte des pistes de réflexion sur ces problèmes.L'originalité de ce travail de thèse repose dans la formulation d'un test d'hypothèse binaire prenant explicitement en compte l'organisation spatiale des pics temps-fréquence. Nous introduisons une méthode d'Analyse de la Densité des Fausses Alarmes (FADA) qui permet de discriminer les régions temps-fréquence abritant le signal de celles n'abritant que du bruit. Plus précisément,le nombre de fausses alarmes dans une région du plan est d'abord modélisé par une loi binomiale, puis par une loi binomiale corrélée, afin de prendre en considération la redondance du spectrogramme. Le test d'hypothèse binaire est résolu par une approche de Neyman-Pearson. Nous démontrons numériquement la pertinence de cette approche et nous la validons sur données réelles de mammifères marins disposant d'une grande variété de signaux et de conditions de bruit. En particulier, nous illustrons la capacité de FADA à discriminer efficacement le signal du bruit en milieu fortement impulsionnel. / The oceans experience heavy anthropogenic pressure due to overfishing, physico-chemical pollution, and noise radiated by industrial and military activities. This work focuses on the use of passive acoustic monitoring of the oceans, as a tool to understand the impact of radiated noise on marine ecosystems, and particularly on marine mammals. This work tackles the task of detection of acoustical signals of marine mammals using the spectrogram. This task is uneasy for two reasons : 1. the ocean noise structure is complex (non-stationary and colored) and 2. the signals of interest are unknown and also shows a complex structure (non-stationary narrow band and/or impulsive). The problem therefore must be solved locally without making a priori hypothesis on the signal. Statistical detectors only based on the local analysis of the noise spectrogram coefficients are available, making them suitable for this problem. However, these detectors suffer two disadvantages : 1. the trade-offs false alarm probability/ detection probability that are available for low signal tonoise ratio are not satisfactory and 2. the separation between narrow-band and impulsive signals is not possible. This work brings some answers to these problems.The main contribution of this work is to formulate a binary hypothesis test taking explicitly in account the spatial organization of time-frequency peaks. We introduce the False Alarm Density Analysis (FADA) framework that efficiently discriminates time-frequency regions hosting signal from the ones hosting noise only. In particular the number of false alarms in regions of the binary spectrogram is first modeled by a binomial distribution, and then by a correlated binomial distribution to take in account the spectrogram redundancy. The binary hypothesis test is solved using a Neyman-Pearson criterion.We demonstrate the relevance of this approach on simulated data and validate the FADA detector on a wide variety of real signals. In particular we show the capability of the proposed method to efficiently detect signals in highly impulsive environment.
|
5 |
Étude des fonctions B-splines pour la fusion d'images segmentées par approche bayésienne / Study of B-spline function for fusion of segmented images by Bayesian approachHadrich Ben Arab, Atizez 02 December 2015 (has links)
Dans cette thèse nous avons traité le problème de l'estimation non paramétrique des lois de probabilités. Dans un premier temps, nous avons supposé que la densité inconnue f a été approchée par un mélange de base B-spline quadratique. Puis, nous avons proposé un nouvel estimateur de la densité inconnue f basé sur les fonctions B-splines quadratiques, avec deux méthodes d'estimation. La première est base sur la méthode du maximum de vraisemblance et la deuxième est basée sur la méthode d'estimation Bayésienne MAP. Ensuite, nous avons généralisé notre étude d'estimation dans le cadre du mélange et nous avons proposé un nouvel estimateur du mélange de lois inconnues basé sur les deux méthodes d'estimation adaptées. Dans un deuxième temps, nous avons traité le problème de la segmentation statistique semi supervisée des images en se basant sur le modèle de Markov caché et les fonctions B-splines. Nous avons montré l'apport de l'hybridation du modèle de Markov caché et les fonctions B-splines en segmentation statistique bayésienne semi supervisée des images. Dans un troisième temps, nous avons présenté une approche de fusion basée sur la méthode de maximum de vraisemblance, à travers l'estimation non paramétrique des probabilités, pour chaque pixel de l'image. Nous avons ensuite appliqué cette approche sur des images multi-spectrales et multi-temporelles segmentées par notre algorithme non paramétrique et non supervisé. / In this thesis we are treated the problem of nonparametric estimation probability distributions. At first, we assumed that the unknown density f was approximated by a basic mixture quadratic B-spline. Then, we proposed a new estimate of the unknown density function f based on quadratic B-splines, with two methods estimation. The first is based on the maximum likelihood method and the second is based on the Bayesian MAP estimation method. Then we have generalized our estimation study as part of the mixture and we have proposed a new estimator mixture of unknown distributions based on the adapted estimation of two methods. In a second time, we treated the problem of semi supervised statistical segmentation of images based on the hidden Markov model and the B-sline functions. We have shown the contribution of hybridization of the hidden Markov model and B-spline functions in unsupervised Bayesian statistical image segmentation. Thirdly, we presented a fusion approach based on the maximum likelihood method, through the nonparametric estimation of probabilities, for each pixel of the image. We then applied this approach to multi-spectral and multi-temporal images segmented by our nonparametric and unsupervised algorithm.
|
Page generated in 0.1792 seconds