Spelling suggestions: "subject:"selbstentwickelten""
1 |
Die Selbstenergie des Omega-MesonsWachs, Mirko. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Darmstadt.
|
2 |
Elektroproduktion von Pi + -Mesonen an 3 He und das Studium von MediumeffektenKohl, Michael. Unknown Date (has links)
Techn. Universiẗat, Diss., 2001--Darmstadt.
|
3 |
Starke Korrelationen in Festkörpern : von lokalisierten zu itineranten Elektronen / Strong correlations in solids : from localized to itinerant electronsKlein, Markus January 2009 (has links) (PDF)
In dieser Arbeit wurden mittels winkelaufgelöster Photoemission verschiedene Verbindungen mit stark korrelierten Elektronen untersucht. Es wurde gezeigt, dass diese Technik einen direkten Zugang zu den niederenergetischen Wechselwirkungen bietet und dadurch wichtige Informationen über die Vielteilchenphysik dieser Systeme liefert. Die direkte Beobachtung der scharfen Quasiteilchenstrukturen in der Nähe der Fermikante ermöglichte insbesondere die genaue Betrachtung der folgenden Punkte: 1. Quantenphasenübergang: analog zu [27] wurde gezeigt, dass die hochaufgelöste PES Zugriff auf die lokale Energieskala TK bietet. Außerdem konnte im Rahmen eines störungstheoretischen Modells allgemein gezeigt werden, wie sich kleine RKKY-Störungen auf TK auswirken. Aus der experimentellen Entwicklung von TK(x) in CeCu6-xAux lassen sich mit Hilfe dieses Modells Rückschlüsse auf den Quantenphasenübergang bei T = 0 ziehen. 2. Kondogitter: mit Hilfe einer geordneten CePt5/Pt(111)-Oberflächenlegierung wurde demonstriert, dass mit ARPES Kondogittereffekte beobachtet werden können. Dazu zählen die Beobachtung von Hybridisierungsbandlücken und der starken Renormierung der Bandmassen in der Nähe von EF. Diese Effekte lassen sich, mit Hilfe unterschiedlicher Anregungsenergien und Messungen an einer isostrukturellen LaPt5-Schicht, eindeutig dem Resultat einer d f -Mischung der elektronischen Zustände zuweisen. Anhand von temperaturabhängigenMessungen konnte erstmals der Übergang von lokalisierten zu kohärenten Quasiteilchen in einem Kondosystem mittels ARPES beobachtet werden. 3. Phasenübergänge: bei FeSi und URu2Si2 wurde jeweils gezeigt, dass die ARPES sensitiv für kleinste Änderungen der elektronischen Struktur in unmittelbarer Umgebung der Fermienergie ist. Es konnten charakteristische Energien und Temperaturen, sowie am Phasenübergang beteiligte Bänder und deren effektive Massen m* quantifiziert werden. Insbesondere wurde gezeigt, dass Heavy-Fermion-Bänder mit m* = 40 me eine wichtige Rolle beim Hidden-order-Phasenübergang in URu2Si2 spielen. 4. Oberflächeneffekte: für alle Proben, außer CeCu6-xAux, musste festgestellt werden, dass Oberflächenzustände beträchtliche Anteile am Spektrum besitzen können. Daher ist bei jedem Material größte Vorsicht bei der Präparation der Oberfläche und der Interpretation der Spektren angebracht. Als eine geeignete Methode um Oberflächen und Volumenanteile auseinander zu halten, stellten sich anregungsenergieabhängige Messungen heraus. 5. theoretische Modelle: trotz der Bezeichnung “stark korrelierte Systeme”, unterscheiden sich die untersuchten Verbindungen bezüglich ihrer theoretischen Beschreibung: die Physik der Cersysteme (CeCu6, CePt5/Pt(111)) ist bei T > TK durch lokale Störstellen bestimmt und lassen sich somit im Rahmen des SIAM beschreiben. Bei tieferen Temperaturen T < TK treten jedoch Anzeichen von beginnender Kohärenz auf und geben somit den Übergang zum PAM wieder. Schwere, dispergierenden Bänder in URu2Si2 und FeSi zeigen, dass beide Systeme nur mit Hilfe eines geordneten Gitters beschreibbar sind. Insbesondere stellt sich für FeSi heraus, dass eine Erklärung im Kondoisolator-Bild falsch ist und ein Hubbard-Modell-Ansatz angebrachter scheint. / In this thesis angle-resolved photoemission investigations on diverse strongly- correlated systems were presented. It was shown that this technique gives a direct access to the low-energy excitations of a solid and therefore provides important information about its many-body physics. In particular the spectroscopic investigation of the sharp quasi-particle features near the Fermi edge gave information about the following points: 1. quantum phase transition: as already investigated in [27], it was shown that high resolution PES gives a direct access to the local energy scale TK. In the framework of a pertubative model, it was presented how small RKKY corrections influence the Kondo temperature. From the experimental evolution of TK(x) in CeCu6-xAux conclusions could be drawn about the quantum phase transition at T = 0. 2. Kondo lattice: an ordered CePt5/Pt(111) surface alloy was prepared and investigated by ARPES. The sharp spectra show the characteristics of a Kondo lattice: hybridization gaps and a strong renormalization of the band mass in the vicinity of the Fermi edge. With the aid of different excitation energies and measurements on an isostructural LaPt5 surface alloy it was shown, that these effects are due to a d f -mixing. For the first time, the transition from the single-impurity to the heavy-fermion regime could be observed by ARPES. 3. phase transitions: for FeSi and URu2Si2 the sensitivity of ARPES to small changes in the Fermi surface was shown in the temperature dependent spectra. The measurements reveal characteristic energies and temperatures of the phase transitions. Furthermore the bands which are involved in the phase transition and their effective masses m* could be quantified. In the case of URu2Si2 it was shown that a heavy-fermion band with m* = 40 me is affected by the hidden-order phase transition. 4. surface effects: besides CeCu6-xAux all samples showed significant surface contribution to the spectra. Excitation energy dependent measurements were found to be a good tool to distinguish between bulk and surface contributions. 5. theoretical models: despite the shared expression “strongly correlated systems” the compounds differ in their theoretical description: it was found that the physics of cerium systems (CeCu6, CePt5/Pt(111)) at T > TK can be described in the framework of the SIAM. However, at lower temperatures (T < TK) the signatures of coherence appear in the spectra. These can only be described by the PAM. Heavy dispersing bands have been observed for URu2Si2 and FeSi. Thus these systems must be described by a Hamiltonian with lattice properties, too. Especially the transition metal compound FeSi was shown to be no Kondo insulator. A description in the framework of a multi-band Hubbard Hamiltonian seems to be more appropriate for this compound.
|
4 |
Band structure renormalization at finite temperatures from first principlesRybin, Nikita 21 August 2023 (has links)
In dieser Doktorarbeit untersuchen wir den Einfluss von Elektron-Phonon-Wechselwirkungen (EPW) auf die Bandlueckenrenormierung in kristallinen Festkoerpern bei endlichen Temperaturen. Das Hauptziel besteht darin, den Einfluss der Kernbewegung und der thermischen Ausdehnung des Gitters auf die Bandstruktur in einer Vielzahl von Materialien zu quantifizieren. Zu diesem Zweck wird der Temperatureinfluss auf das EPW in harmonischen Naeherungen unter Verwendung der stochastischen Abtastmethode und vollstaendig anharmonisch durch Durchführung von ab initio Molekulardynamiksimulationen (aiMD). Die Bandluecke bei endlichen Temperaturen wird aus der thermodynamisch gemittelten Spektralfunktion extrahiert, die unter Verwendung der Bandentfaltungstechnik berechnet wird. Waehrend die Verwendung von aiMD bereits fuer Berechnungen von EPW verwendet wurde, wurde die Kombination von aiMD und Bandentfaltung zur Behandlung der Bandluecken renormalisierung erst kuerzlich verwendet. In dieser Doktorarbeit haben wir eine verbesserte Bandentfaltungstechnik verwendet, um die Berechnung effektiv zu verwalten. Diese verbesserte Methode enthaelt mehrere methodische Neuerungen, die dazu dienen, den Rechenaufwand zu verringern und das statistische Rauschen in den Endergebnissen zu minimieren. Die aktualisierte Methode wurde gruendlich bewertet, dokumentiert und mit einer benutzerfreundlichen Oberflaeche gestaltet. Wir praesentieren eine umfassende Untersuchung der numerischen Aspekte der thermodynamischen Mittelung, der Schaetzung von Fehlerbalken und der Bewertung der Konvergenz in Bezug auf die Groesse der Simulationssuperzelle. Unser etabliertes Protokoll ermoeglicht die Berechnung der Bandlückenrenormierung bei endlichen Temperaturen, was in guter Uebereinstimmung mit frueheren theoretischen Studien und experimentellen Daten steht. / In this thesis, we investigate the influence of electron-phonon interactions (EPI) on the band gap renormalization in crystalline solids at finite temperatures. The main goal is to identify the impact of the nuclear motion and the lattice thermal expansion on the band structure in a wide range of materials. For this purpose, the temperature influence on the EPI is calculated in the harmonic approximations by utilizing the stochastic sampling methodology and fully anharmonically, by performing ab initio molecular dynamics simulations (aiMD). The band gap at finite temperatures is extracted from the thermodynamically averaged spectral function, which is calculated using band-unfolding technique. While utilization of aiMD was already used for calculations of EPI the combination of aiMD and band-unfolding to treat the band gap renormalization was used only recently. In this thesis, we employed an improved band unfolding technique in order to effectively manage the calculations. This improved method incorporates several methodological innovations that serve to mitigate computational cost and minimize statistical noise in the final results. The updated method was thoroughly benchmarked, documented, and designed with a user-friendly interface. We present a comprehensive examination of the numerical aspects of thermodynamic averaging, the estimation of error bars, and the evaluation of convergence with respect to the size of the simulation supercell. Our established protocol enables the calculation of band gap renormalization at finite temperatures, which is in good agreement with prior theoretical studies and experimental data.
|
Page generated in 0.0673 seconds