• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Études de problèmes aux limites non linéaires de type pseudo-parabolique

Seam, Ngonn 14 September 2010 (has links) (PDF)
L'objectif de ce travail est l'étude du problème non linéaire de type pseudo parabolique suivant : trouver une fonction mesurable $u$ de $Q:=]0,T[\times \Omega$ solution de \begin{equation*} \left\{ \begin{array}{l@{\quad}l} f\left(t,x,u_t\right)-Div \left\{a\left(x,u,u_t\right)\nabla u+b\left(x,u,u_t\right)\nabla u_t \right\}=g(t,x), \; (t,x)\in Q, \\ u(x,t)=0,\; (t,x)\in ]0,T[\times \partial \Omega, \\ u(0,x)=u_0, \; x\in \Omega,\\ \end{array} \right. \end{equation*} où l'opérateur de Nemestki associé à la fonction $f$ est monotone.\\ Un premier chapitre est conscré à l'étude de l'existence d'une solution pour le problème ci-dessus. Pour cela, on utilise une méthode de semi-discrétisation implicite en temps. L'existence des itérés repose sur le théorème de point fixe de Schauder-Tikhonov et la convergence du schéma sur une outil de compacité adapté à la situation. À la fin du chapitre, on propose des applications à l'équation de Barenblatt et au cas d'un $f$ multivoque. \\ Dans le second chapitre, on s'intéresse au problème de Barenblatt pseudo-parabolique : rechercher une fonction mesurable $u$ de $Q$ à valeur réelle telle que \begin{equation*} \left\{ \begin{array}{l@{\quad}l} f\left(u_t\right(t,x))-\Delta u(t,x)-\epsilon \Delta u_t(t,x)=g(t,x), \; (t,x)\in Q, \\ u(x,t)=0,\; (t,x)\in ]0,T[\times \partial \Omega, \\ u(0,x)=u_0, \; x\in \Omega,\\ \end{array} \right. \end{equation*} où $f$ n'est pas nécessairement monotone.\\ Pour $\epsilon> \epsilon_0>0 $, où $\epsilon_0$ est une valeur critique, on montre que le problème est bien posé en utilisant une méthode similaire à celle du premier chapitre. Pour la valeur critique de $\epsilon=\epsilon_0$, le problème admet au plus une solution ; cette dernière existe moyennant une hypothèse supplémentaire sur $f$. Enfin, si $0<\epsilon<\epsilon_0$, la solution n'est pas unique en général. On propose enfin d'une approche stochastique de l'équation pseudo-parabolique de Barenblatt-Sobolev. Le dernier chapitre propose des simulations numériques monodimensionnelles ; notamment, on s'intéresse à la perturbation singulière pseudo-parabolique lorsque la diffusion moléculaire change de signe.

Page generated in 0.1702 seconds