• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterisation of semiconductor nanoparticle thin films

Cant, David January 2013 (has links)
Due to their unique properties, nanoparticles have been a focus of significant research interest for use in various opto-electronic applications, particularly in the field of solar energy generation. In order to realize a nanoparticle-based solar cell, it is important to be able to create thin films of organised nanoparticles and to be able to control their surface properties. In this work the use of a novel synthesis technique involving reaction at the interface between two immiscible liquids to synthesise thin films of lead sulfide nanoparticles on the order of ~10 nm in diameter is reported. The use of the liquid-liquid interface allows the synthesis of particles without the use of stabilising ligands, with sizes and morphologies determined by the conditions present at the interface. Variations in the precursor used, solvent height, and precursor concentration were explored. Films synthesised at various solvent heights displayed a decrease in particle size with increasing solvent height. This trend was seen to vary depending on the lead-containing precursor used. Changes in the precursor concentration resulted in changes in the morphology of the resulting particles as observed with transmission electron microscopy (TEM). Preferential growth along certain planes was observed for particles synthesised with the highest lead precursor concentration. Experiments with precursors with differing organic chain length displayed an increase in particle size with increasing chain length, as well as an increase in preferential growth observed by X-ray diffraction (XRD). Surface ageing was investigated using X-ray photoelectron spectroscopy (XPS) techniques, which showed that all samples followed a similar oxidation mechanism. Oxidised lead species, attributed to hydrated lead oxide, were determined to be the initial oxidation product, formed within a week of exposure to air. Sulfoxy species were observed to form over a greater length of time, with sulfate being determined to be the final oxidation product. An oxidation mechanism is proposed based on XPS analysis of films exposed to air for up to nine months.
2

Colloidal Semiconductor Nanocrystals: A Study of the Syntheses of and Capping Structures for CdSe

Herz, Erik 20 August 2003 (has links)
Luminescent quantum dots (QDs) or rods are semiconductor nano-particles that may be used for a wide array of applications such as in electro-optical devices, spectral bar coding, tagging and light filtering. In the case under investigation, the nano-particles are cadmium-selenide (CdSe), though they can be made from cadmium-sulfide, cadmium-telluride or a number of other II-VI and III-V material combinations. The CdSe quantum dots emit visible light at a repeatable wavelength when excited by an ultraviolet source. The synthesis of colloidal quantum dot nanoparticles is usually an organo-metallic precursor, high temperature, solvent based, airless chemical procedure that begins with the raw materials CdO, a high boiling point ligand, and a Se-trioctylphosphine conjugate. This investigation explores the means to produce quantum dots by this method and to activate the surface or modify the reaction chemistry with such molecules as trioctylphosphine oxide, stearic acid, dodecylamine, phenyl sulfone, aminophenyl sulfone, 4,4'dichlorodiphenyl sulfone, 4,4'difluorodiphenyl sulfone, sulfanilamide and zinc sulfide during the production to allow for further applications of quantum dots involving new chemistries of the outer surface. Overall, the project has been an interesting and successful one, producing a piece of equipment, a lot of ideas, and many dots with varied capping structures that have been purified, characterized, and stored in such a way that they are ready for immediate use in future projects. / Master of Science
3

Herstellung und Charakterisierung von Nanokristall-Lichtemitterdioden

Otto, Tobias 29 December 2011 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit dem Aufbau von Nanokristall-LEDs. Dazu werden der Synthese, der Abscheidung und dem Aufbau und der Charakterisierung von Nanopartikeln und LEDs Platz eingeräumt. CdTe-Nanopartikel werden über eine wässrige Synthese, die auf elektrochemisch erzeugten Tellurwasserstoff beruhte, hergestellt. Der Vorteil besteht im geringen Aufwand und der guten Reproduzierbarkeit. Es konnte festgestellt werden, dass sich ein hoher Überschuss an Cadmiumionen in der Lösung positiv auf die Wachstumsgeschwindigkeit der Nanopartikel auswirkt. Statt des anfänglich benutzten Layer-by-Layer-Tauchverfahrens wurde ein Layer-by-Layer-Sprühverfahren entwickelt, das die schnelle Herstellung homogener Filme, bestehend aus alternierenden Schichten einer Matrix und der Nanopartikel, ermöglichte. Nachteilig ist der hohe Verbrauch an Nanopartikeln gegenüber dem Tauchverfahren. Dem Tauchverfahren lastet der Umstand an, die kolloidalen Lösungen durch häufiges Eintauchen des Substrats zu verunreinigen. Dies wird beim Sprühverfahren vermieden, da alles nicht adsorbierte Material nach unten abfließt. Es wurde gezeigt, dass sich Polyelektrolyte durch anorganische Gele ersetzen lassen, die über einen Sol-Gel-Prozess darstellbar sind, wobei es möglich wurde „All inorganic“-LEDs aufzubauen mit dem Vorteil der hohen Temperaturstabilität. Wobei sich die Reinheit der dargestellten Aluminiumoxid-Sole stark auf das Bestreben Aluminiumoxid-Kristalle zu bilden, auswirkt, die die Funktionsfähigkeit der LED behindern können. Die Verwendung einer isolierenden Matrix wie Poly-(diallyldimethylammoniumchlorid) oder Aluminiumoxid als Zwischenschicht zum Aufbau von mehrlagigen Nanopartikelschichten stellte sich als unproblematisch heraus, da sich Ladungsträger über einen „hopping“-Mechanismus zwischen den Halbleiternanopartikeln bewegen können. Größere Probleme bereitete die Verwendung von Nanopartikeln größerer Bandlücken wie ZnSe (2,7eV) als Elektrolumineszenz-Emitter. Es konnte nur eine weissbläuliche Emission beobachtet werden. Mit Nanopartikeln kleiner Bandlücke wie CdTe (1,6eV) wurde eine schmalbandige rote Emission festgestellt. Vorteilhaft erwies sich die Verwendung von Kern-Schale-Teilchen wie CdSe/CdS. Mit einer Matrix aus Aluminiumoxid-Gel konnte eine LED mit sehr niedriger Onset-Spannung (2,3V) hergestellt werden, die eine Lebensdauer von 33,5h besaß und noch bei einer Temperatur von 150°C emittierte. Ein weiterer Weg Nanopartikel zu stabilisieren, stellt der Einbau in makrokristalline Einkristalle durch Mischkristallbildung in Wasser oder organischen Lösungsmitteln dar. Die erhaltenen Kristalle zeichnen sich durch hohe photochemische und thermische Stabilität aus. Sie zeigen die Emissionseigenschaften der Nanopartikel, die nach Auflösung der Matrix wieder kolloidal in Lösung gehen. Allerdings liegen die Nanopartikel in der Kristallmatrix nicht regulär verteilt vor. Die Mischkristalle wurden erfolgreich als Luminophor in einer Gasentladungslampe und als Konversionsschicht einer kommerziellen LED getestet, die die Emission der Nanopartikel aufwies.
4

Herstellung und Charakterisierung von Nanokristall-Lichtemitterdioden

Otto, Tobias 09 June 2011 (has links)
Die vorliegende Arbeit beschäftigt sich mit dem Aufbau von Nanokristall-LEDs. Dazu werden der Synthese, der Abscheidung und dem Aufbau und der Charakterisierung von Nanopartikeln und LEDs Platz eingeräumt. CdTe-Nanopartikel werden über eine wässrige Synthese, die auf elektrochemisch erzeugten Tellurwasserstoff beruhte, hergestellt. Der Vorteil besteht im geringen Aufwand und der guten Reproduzierbarkeit. Es konnte festgestellt werden, dass sich ein hoher Überschuss an Cadmiumionen in der Lösung positiv auf die Wachstumsgeschwindigkeit der Nanopartikel auswirkt. Statt des anfänglich benutzten Layer-by-Layer-Tauchverfahrens wurde ein Layer-by-Layer-Sprühverfahren entwickelt, das die schnelle Herstellung homogener Filme, bestehend aus alternierenden Schichten einer Matrix und der Nanopartikel, ermöglichte. Nachteilig ist der hohe Verbrauch an Nanopartikeln gegenüber dem Tauchverfahren. Dem Tauchverfahren lastet der Umstand an, die kolloidalen Lösungen durch häufiges Eintauchen des Substrats zu verunreinigen. Dies wird beim Sprühverfahren vermieden, da alles nicht adsorbierte Material nach unten abfließt. Es wurde gezeigt, dass sich Polyelektrolyte durch anorganische Gele ersetzen lassen, die über einen Sol-Gel-Prozess darstellbar sind, wobei es möglich wurde „All inorganic“-LEDs aufzubauen mit dem Vorteil der hohen Temperaturstabilität. Wobei sich die Reinheit der dargestellten Aluminiumoxid-Sole stark auf das Bestreben Aluminiumoxid-Kristalle zu bilden, auswirkt, die die Funktionsfähigkeit der LED behindern können. Die Verwendung einer isolierenden Matrix wie Poly-(diallyldimethylammoniumchlorid) oder Aluminiumoxid als Zwischenschicht zum Aufbau von mehrlagigen Nanopartikelschichten stellte sich als unproblematisch heraus, da sich Ladungsträger über einen „hopping“-Mechanismus zwischen den Halbleiternanopartikeln bewegen können. Größere Probleme bereitete die Verwendung von Nanopartikeln größerer Bandlücken wie ZnSe (2,7eV) als Elektrolumineszenz-Emitter. Es konnte nur eine weissbläuliche Emission beobachtet werden. Mit Nanopartikeln kleiner Bandlücke wie CdTe (1,6eV) wurde eine schmalbandige rote Emission festgestellt. Vorteilhaft erwies sich die Verwendung von Kern-Schale-Teilchen wie CdSe/CdS. Mit einer Matrix aus Aluminiumoxid-Gel konnte eine LED mit sehr niedriger Onset-Spannung (2,3V) hergestellt werden, die eine Lebensdauer von 33,5h besaß und noch bei einer Temperatur von 150°C emittierte. Ein weiterer Weg Nanopartikel zu stabilisieren, stellt der Einbau in makrokristalline Einkristalle durch Mischkristallbildung in Wasser oder organischen Lösungsmitteln dar. Die erhaltenen Kristalle zeichnen sich durch hohe photochemische und thermische Stabilität aus. Sie zeigen die Emissionseigenschaften der Nanopartikel, die nach Auflösung der Matrix wieder kolloidal in Lösung gehen. Allerdings liegen die Nanopartikel in der Kristallmatrix nicht regulär verteilt vor. Die Mischkristalle wurden erfolgreich als Luminophor in einer Gasentladungslampe und als Konversionsschicht einer kommerziellen LED getestet, die die Emission der Nanopartikel aufwies.

Page generated in 0.0654 seconds