• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Nonassociative Division Rings and Projective Planes

Landquist, Eric Jon 19 June 2000 (has links)
An interesting thing happens when one begins with the axioms of a field, but does not require the associative and commutative properties. The resulting nonassociative division ring is referred to as a ``semifield" in this paper. Semifields have intimate ties to finite projective planes. In short, a finite projective plane with certain restrictions gives rise to a semifield, and, in turn, a finite semifield can be used via a coordinate construction, to build a special finite projective plane. It is also shown that two finite semifields provide a coordinate system for isomorphic projective planes if and only if the semifields are isotopic, where isotopy is a relationship similar to but weaker than isomorphism. Before we prove those results, we explore the nature of isotopy to get a little better feel for the concept. For example, we look at isotopy for associative algebras. We will also examine a particular family of semifields and gather concrete information about solutions to linear equations and isomorphisms. / Master of Science
2

Konečně generované polookruhy a polotělesa / Finitely generated semirings and semifields

Šíma, Lucien January 2021 (has links)
We investigate commutative semirings, which are formed by a ground set equipped with two binary associative and commutative operations such that one distributes over the other. We narrow down our interest to ideal-simple semirings, that is, semirings without proper ideals. We present the classification of ideal-simple semirings and deal with some classes of ideal-simple semirings, namely semifields and parasemifields. The main result of this thesis is giving tight bounds on the minimal number of generators needed to generate a parasemifield as a semiring. We also study how the semifields that are finitely generated as a semiring look like. Last, but not least, we show that every finitely generated ideal-simple semiring is finitely-generated as a multiplicative semigroup.

Page generated in 0.0446 seconds