• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trees with Unique Minimum Semitotal Dominating Sets

Haynes, Teresa W., Henning, Michael A. 01 May 2020 (has links)
A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number is the minimum cardinality of a semitotal dominating set of G. We observe that the semitotal domination number of a graph G falls between its domination number and its total domination number. We provide a characterization of trees that have a unique minimum semitotal dominating set.
2

Perfect Graphs Involving Semitotal and Semipaired Domination

Haynes, Teresa W., Henning, Michael A. 01 August 2018 (has links)
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number γt 2(G) is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number γpr 2(G) is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number γ(G) , the total domination γt(G) , and the paired domination number γpr(G) are related to the semitotal and semipaired domination numbers by the following inequalities: γ(G) ≤ γt 2(G) ≤ γt(G) ≤ γpr(G) and γ(G) ≤ γt 2(G) ≤ γpr 2(G) ≤ γpr(G) ≤ 2 γ(G). Given two graph parameters μ and ψ related by a simple inequality μ(G) ≤ ψ(G) for every graph G having no isolated vertices, a graph is (μ, ψ) -perfect if every induced subgraph H with no isolated vertices satisfies μ(H) = ψ(H). Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of (μ, ψ) -perfect graphs, where μ and ψ are domination parameters including γ, γt and γpr. We study classes of perfect graphs for the possible combinations of parameters in the inequalities when γt 2 and γpr 2 are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.
3

Semipaired Domination in Graphs

Haynes, Teresa W., Henning, Michael A. 01 February 2018 (has links)
In honor of Professor Peter Slater's work on paired domination, we introduce a relaxed version of paired domination, namely semipaired domination. Let G be a graph with vertex set V and no isolated vertices. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number γPr2(G) is the minimum cardinality of a semipaired dominating set of G. In this paper, we study the semipaired domination versus other domination parameters. For example, we show that γ(G) ≤ γPr2(G) ≤ 2γ(G) and 2/3γt(G) ≤ γPr2(T) ≤ γ 4/3γt(G), where γ(G) and γt(G) denote the domination and total domination numbers of G. We characterize the trees G for which γPr2(G) = 2γ(G).

Page generated in 0.0448 seconds