Spelling suggestions: "subject:"semitones"" "subject:"semitone""
1 |
Trees with Unique Minimum Semitotal Dominating SetsHaynes, Teresa W., Henning, Michael A. 01 May 2020 (has links)
A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number is the minimum cardinality of a semitotal dominating set of G. We observe that the semitotal domination number of a graph G falls between its domination number and its total domination number. We provide a characterization of trees that have a unique minimum semitotal dominating set.
|
2 |
Perfect Graphs Involving Semitotal and Semipaired DominationHaynes, Teresa W., Henning, Michael A. 01 August 2018 (has links)
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number γt 2(G) is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number γpr 2(G) is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number γ(G) , the total domination γt(G) , and the paired domination number γpr(G) are related to the semitotal and semipaired domination numbers by the following inequalities: γ(G) ≤ γt 2(G) ≤ γt(G) ≤ γpr(G) and γ(G) ≤ γt 2(G) ≤ γpr 2(G) ≤ γpr(G) ≤ 2 γ(G). Given two graph parameters μ and ψ related by a simple inequality μ(G) ≤ ψ(G) for every graph G having no isolated vertices, a graph is (μ, ψ) -perfect if every induced subgraph H with no isolated vertices satisfies μ(H) = ψ(H). Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of (μ, ψ) -perfect graphs, where μ and ψ are domination parameters including γ, γt and γpr. We study classes of perfect graphs for the possible combinations of parameters in the inequalities when γt 2 and γpr 2 are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.
|
3 |
Semipaired Domination in GraphsHaynes, Teresa W., Henning, Michael A. 01 February 2018 (has links)
In honor of Professor Peter Slater's work on paired domination, we introduce a relaxed version of paired domination, namely semipaired domination. Let G be a graph with vertex set V and no isolated vertices. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number γPr2(G) is the minimum cardinality of a semipaired dominating set of G. In this paper, we study the semipaired domination versus other domination parameters. For example, we show that γ(G) ≤ γPr2(G) ≤ 2γ(G) and 2/3γt(G) ≤ γPr2(T) ≤ γ 4/3γt(G), where γ(G) and γt(G) denote the domination and total domination numbers of G. We characterize the trees G for which γPr2(G) = 2γ(G).
|
Page generated in 0.0448 seconds