Spelling suggestions: "subject:"menor"" "subject:"tenor""
11 |
Automatic Volume Estimation Using Structure-from-Motion Fused with a Cellphone's Inertial SensorsFallqvist, Marcus January 2017 (has links)
The thesis work evaluates a method to estimate the volume of stone and gravelpiles using only a cellphone to collect video and sensor data from the gyroscopesand accelerometers. The project is commissioned by Escenda Engineering withthe motivation to replace more complex and resource demanding systems with acheaper and easy to use handheld device. The implementation features popularcomputer vision methods such as KLT-tracking, Structure-from-Motion, SpaceCarving together with some Sensor Fusion. The results imply that it is possible toestimate volumes up to a certain accuracy which is limited by the sensor qualityand with a bias. / I rapporten framgår hur volymen av storskaliga objekt, nämligen grus-och stenhögar,kan bestämmas i utomhusmiljö med hjälp av en mobiltelefons kamerasamt interna sensorer som gyroskop och accelerometer. Projektet är beställt avEscenda Engineering med motivering att ersätta mer komplexa och resurskrävandesystem med ett enkelt handhållet instrument. Implementationen använderbland annat de vanligt förekommande datorseendemetoderna Kanade-Lucas-Tommasi-punktspårning, Struktur-från-rörelse och 3D-karvning tillsammans medenklare sensorfusion. I rapporten framgår att volymestimering är möjligt mennoggrannheten begränsas av sensorkvalitet och en bias.
|
12 |
Wireless and Social Networks : Some Challenges and InsightsSunny, Albert January 2016 (has links) (PDF)
Wireless networks have potential applications in wireless Internet connectivity, battlefields, disaster relief, and cyber-physical systems. While the nodes in these networks communicate with each other over the air, the challenges faced by and the subsequent design criteria of these networks are diverse. In this thesis, we study and discuss a few design requirements of these networks, such as efficient utilization of the network bandwidth in IEEE 802.11 infrastructure networks, evaluating utility of sensor node deployments, and security from eavesdroppers.
The presence of infrastructure IEEE 802.11 based Wireless Local Area Networks (WLANs) allows mobile users to seamlessly transfer huge volumes of data. While these networks accommodate mobility, and are a cost-effective alternative to cellular networks, they are well known to display several performance anomalies. We study a few such anomalies, and provide a performance management solution for IEEE 802.11 based WLANs. On the other hand, in sensor networks, the absence of infrastructure mandates the use of adhoc network architectures. In these architectures, nodes are required to route data to gateway nodes over a multi-hop network. These gateway nodes are larger in size, and costlier in comparison with the regular nodes. In this context, we propose a unified framework that can be used to compare different deployment scenarios, and provide a means to design efficient large-scale adhoc networks.
In modern times, security has become an additional design criterion in wireless networks. Traditionally, secure transmissions were enabled using cryptographic schemes. However, in recent years, researchers have explored physical layer security as an alternative to these traditional cryptographic schemes. Physical layer security enables secure transmissions at non-zero data rate between two communicating nodes, by exploiting the degraded nature of the eavesdropper channel and the inherent randomness of the wireless medium. Also, in many practical scenarios, several nodes cooperate to improve their individual secrecy rates. Therefore, in this thesis, we also study scenarios, where cooperative schemes can improve secure end-to-end data transmission rates, while adhering to an overall power budget.
In spite of the presence of voluminous reservoirs of information such as digital libraries and the Internet, asking around still remains a popular means of seeking information. In scenarios where the person is interested in communal, or location-specific information, such kind of retrieval may yield better results than a global search. Hence, wireless networks should be designed, analyzed and controlled by taking into account the evolution of the underlying social networks. This alliance between social network analysis and adhoc network architectures can greatly advance the design of network protocols, especially in environments with opportunistic communications. Therefore, in addition to the above mentioned problem, in this thesis, we have also presented and studied a model that captures the temporal evolution of information in social networks with memory.
|
Page generated in 0.0562 seconds