• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of cold climate on boreal ecosystem processes : exploring data and model uncertainties

Wu, Sihong January 2011 (has links)
The impact of cold climate on physical and biological processes, especially the role of air and soil temperature in recovering photosynthesis and transpiration in boreal forests, was investigated in a series of studies. A process-based ecosystem model (CoupModel) considering atmospheric, soil and plant components was evaluated and developed using Generalized Likelihood Uncertainty Estimation (GLUE) and detailed measurements from three different sites. The model accurately described the variability in measurements within days, within years and between years. The forcing environmental conditions were shown to govern both aboveground and belowground processes and regulating carbon, water and heat fluxes. However, the various feedback mechanisms between vegetation and environmental conditions are still unclear, since simulations with one model assumption could not be rejected when compared with another. The strong interactions between soil temperature and moisture processes were indicated by the few behavioural models obtained when constrained by combined temperature and moisture criteria. Model performance on sensible and latent heat fluxes and net ecosystem exchange (NEE) also indicated the coupled processes within the system. Diurnal and seasonal courses of eddy flux data in boreal conifer ecosystems were reproduced successfully within defined ranges of parameter values. Air temperature was the major limiting factor for photosynthesis in early spring, autumn and winter, but soil temperature was a rather important limiting factor in late spring. Soil moisture and nitrogen showed indications of being more important for regulating photosynthesis in the summer period. The need for systematic monitoring of the entire system, covering both soil and plant components, was identified as a subject for future studies. The results from this modelling work could be applied to suggest improvements in management of forest and agriculture ecosystems in order to reduce greenhouse gas emissions and to find adaptations to future climate conditions. / QC 20110921 / the Nitro-Europe project
2

Modeling the Seasonality of Carbon, Evapotranspiration and Heat Processes for Cold Climate Conditions

Wu, Sihong January 2010 (has links)
The productivity of agricultural and forest ecosystems in regions at higher latitudes is to a large extent governed by low temperature and moisture conditions. Environmental conditions are acting both above- and below-ground and regulating carbon fluxes and evapotranspiration. However, the understanding of various feedbacks between vegetation and environmental conditions is still unclear. In this thesis, two studies were conducted to understand the physical and biological processes. In the first study, the aim was to simulate soil temperature and moisture dynamics in the bare soil with seasonal frost conditions in China. In the second study, the aims were to model seasonal courses of carbon and evapotranspiration and to examine the responses of photosynthesis, transpiration and respiration on environmental conditions in a boreal Scots pine ecosystem in Finland. In both studies the CoupModel was applied to simulate the dynamic responses of the systems. Both sites represented investigations from which a high number of measurements were available. To understand to what extent the data could be used to increase the understanding of the systems, the Generalized Likelihood Uncertainty Estimation (GLUE) was applied. The GLUE method was useful to reduce basic uncertainties with respect to parameter ranges, model structures and measurements. The strong interactions between soil temperature and moisture processes have indicated by a few behavioral models obtained when constrained by combined temperature and moisture criteria. Model performance on sensible and latent heat fluxes and net ecosystem exchange (NEE) also indicated the coupled processes within the system. Seasonal and diurnal courses were reproduced successfully with reduced parameter ranges. However, uncertainties on what is the most general regulation for transpiration and NEE are still unclear and need further systematic investigations. / QC 20101206

Page generated in 0.1272 seconds