• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • Tagged with
  • 19
  • 19
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

HYPERSPECTRAL PLANNER INSTRUMENTATION FOR PRODUCT GOAL SYNTHESIS IN MATERIAL PROCESS CONTROL

JACOBS, JOHN DAVID 11 October 2001 (has links)
No description available.
12

Integration of Multiple Sensors for Astronaut Navigation on The Lunar Surface

He, Shaojun 06 January 2012 (has links)
No description available.
13

On precise three-dimensional environment modeling via UAV-based photogrammetric systems / Modélisation tridimensionnelle précise de l'environnement à l’aide des systèmes de photogrammétrie embarqués sur drones

Shahbazi, Mozhdeh January 2016 (has links)
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment. / Résumé : Les images acquises à l’aide d’aéronefs sans pilote (ASP) permettent de produire des données de résolutions spatiales et temporelles uniques pour la modélisation tridimensionnelle (3D). Les solutions développées pour ce secteur d’activité sont principalement basées sur des concepts de photogrammétrie et peuvent être identifiées comme des systèmes photogrammétriques embarqués sur aéronefs sans pilote (SP-ASP). Ils sont utilisés dans plusieurs applications environnementales où l’information géospatiale et visuelle est essentielle. Ces applications incluent notamment la gestion des ressources naturelles (ex. : agriculture de précision), la sécurité publique et militaire (ex. : gestion du trafic), les services d’ingénierie (ex. : inspection de bâtiments) et les services de santé publique (ex. : épidémiologie et gestion des risques). Les SP-ASP peuvent être subdivisés en catégories selon les besoins en termes de précision et de résolution. En effet, dans certains cas, tel qu’en ingénierie, l’information sur l’environnement doit être de haute précision et de haute résolution (ex. : modélisation 3D avec une précision et une résolution inférieure à un centimètre). Pour d’autres applications, tel qu’en gestion de la faune sauvage, des niveaux de précision et de résolution moindres peut être suffisants (ex. : résolution de l’ordre de quelques décimètres). Cependant, même dans ce type d’applications les caractéristiques des SP-ASP devraient être prises en considération dans le développement des systèmes et dans leur utilisation, et ce, pour atteindre les résultats visés. À cet égard, cette thèse présente une revue exhaustive des applications de l’imagerie aérienne acquise par ASP et de déterminer les challenges les plus courants. Cette étude a également permis d’établir les caractéristiques et exigences spécifiques des SP-ASP qui sont généralement ignorées ou partiellement discutées dans les études récentes. En conséquence, la première partie de cette thèse traite des aspects méthodologiques et d’expérimentation de la mise en place d’un SP-ASP. Le système développé a été évalué pour la modélisation précise d’une gravière et utilisé pour réaliser des mesures de changement volumétrique. Cette application a été retenue pour deux raisons principales. Premièrement, ce type de milieu fournit un environnement difficile pour la modélisation, et ce, en termes de changement d’échelle, de changement de relief du terrain ainsi que la grande diversité de structures et de textures. Deuxièment, le suivi de mines à ciel ouvert exige un niveau de précision élevé, ce qui justifie les efforts déployés pour mettre au point un SP-ASP de haute précision. Les composantes matérielles du système consistent en un ASP à propulsion électrique de type hélicoptère, d’une caméra numérique à haute résolution ainsi qu’une station inertielle. La composante logicielle est composée de plusieurs programmes développés particulièrement pour calibrer la caméra et la plateforme, intégrer les systèmes, enregistrer les données, planifier les paramètres de vol et détecter automatiquement les points de contrôle au sol. Les détails complets du système sont abordés dans la thèse et des solutions sont proposées afin d’améliorer le système et la qualité des données photogrammétriques produites. La précision des résultats a été évaluée sous diverses conditions de cartographie, incluant le géoréférencement direct et indirect avec un nombre, une répartition et des types de points de contrôle variés. De plus, les effets de la configuration des images et la stabilité du réseau sur la précision de la modélisation ont été évalués. La deuxième partie de la thèse porte sur l’amélioration des techniques de reconstruction éparse et dense. Les solutions proposées sont des alternatives aux techniques de photogrammétrie aérienne traditionnelle et adaptée aux caractéristiques particulières de l’imagerie acquise à basse altitude par ASP. Tout d’abord, une méthode robuste de correspondance éparse et d’estimation de la géométrie épipolaire a été développée. L’élément clé de cette méthode est sa capacité à gérer le pourcentage très élevé des valeurs aberrantes (erreurs entre les points correspondants) avec une efficacité de calcul remarquable en comparaison avec les techniques usuelles. Ensuite, une stratégie d’ajustement de bloc basée sur l’intégration de pseudoobservations du modèle Gauss-Helmert a été proposée. Le principal avantage de cette stratégie consistait à contrôler les effets négatifs du réseau d’images instable et des images bruitées sur la précision de l’autocalibration. Une implémentation éparse de cette stratégie a aussi été réalisée, ce qui a permis de traiter des jeux de données contenant des millions de points de liaison. Finalement, les concepts de courbes intrinsèques ont été revisités pour l’appariement stéréo dense. La technique proposée pourrait atteindre un haut niveau de précision et d’efficacité en recherchant uniquement dans une petite portion de l’espace de recherche des disparités ainsi qu’en traitant les occlusions et les ambigüités d’appariement. Ces solutions photogrammétriques ont été largement testées à l’aide de données synthétiques, d’images à courte portée ainsi que celles acquises sur le site de la gravière. Le système a démontré sa capacité a modélisation dense de l’environnement avec une très haute exactitude en atteignant une précision 3D absolue de l’ordre de 11±7 mm.
14

Potential and application fields of lightweight hydraulic components in multi-material design

Ulbricht, Andreas, Gude, Maik, Barfuß, Daniel, Birke, Michael, Schwaar, Andree, Czulak, Andrzej 02 May 2016 (has links) (PDF)
Hydraulic systems are used in many fields of applications for different functions like energy storage in hybrid systems. Generally the mass of hydraulic systems plays a key role especially for mobile hydraulics (construction machines, trucks, cars) and hydraulic aircraft systems. The main product properties like energy efficiency or payload can be improved by reducing the mass. In this connection carbon fiber reinforced plastics (CFRP) with their superior specific strength and stiffness open up new chances to acquire new lightweight potentials compared to metallic components. However, complex quality control and failure identification slow down the substitution of metals by fiber-reinforced plastics (FRP). But the lower manufacturing temperatures of FRP compared to metals allow the integration of sensors within FRP-components. These sensors then can be advantageously used for many functions like quality control during the manufacturing process or structural health monitoring (SHM) for failure detection during their life cycle. Thus, lightweight hydraulic components made of composite materials as well as sensor integration in composite components are a main fields of research and development at the Institute of Lightweight Engineering and Polymer Technology (ILK) of the TU Dresden as well as at the Leichtbau-Zentrum Sachsen GmbH (LZS).
15

High-frequency tri-axial resonant gyroscopes

Sung, Wang-Kyung 12 January 2015 (has links)
This dissertation reports on the design and implementation of a high-frequency, tri-axial capacitive resonant gyroscopes integrated on a single chip. The components that construct tri-axial rotation sensing consist of a yaw, a pitch and a roll device. The yaw-rate gyroscope has a wide bandwidth and a large full-scale range, and operates at a mode-matched condition with DC polarization voltage of 10V without frequency tuning requirement. The large bandwidth of 3kHz and expected full-scale range over 30,000˚/sec make the device exhibit fast rate response for rapid motion sensing application. For the pitch-and-roll rate sensing, an in-plane drive-mode and two orthogonal out-of-plane sense-modes are employed. The rotation-rate sensing from lateral axes is performed by mode-matching the in-plane drive-mode with out-of-plane sense-modes to detect Coriolis-force induced deflection of the resonant mass. To compensate process variations and thickness deviations in the employed silicon-on-insulator (SOI) substrates, large electrostatic frequency tunings of both the drive and sense modes are realized. A revised high aspect ratio combined polysilicon and silicon (HARPSS) process is developed to resolve the Coriolis response that exists toward out-of-plane direction while drive-mode exists on in-plane, and tune individual frequencies with minimal interference to unintended modes. To conclude and overcome the performance limitation, design optimization of high-frequency tri-axial gyroscopes is suggested. Q-factor enhancement through reduction of thermoelastic damping (TED) and optimizations of physical dimensions are suggested for the yaw disk gyroscope. For the pitch-and-roll gyroscope, scaling property of physical dimension and its subsequent performance enhancement are analyzed.
16

Traffic Scene Perception using Multiple Sensors for Vehicular Safety Purposes

Hosseinyalamdary , Saivash, Hosseinyalamdary 04 November 2016 (has links)
No description available.
17

Land Vehicle Navigation With Gps/ins Sensor Fusion Using Kalman Filter

Akcay, Emre Mustafa 01 December 2008 (has links) (PDF)
Inertial Measurement Unit (IMU) and Global Positioning System (GPS) receivers are sensors that are widely used for land vehicle navigation. GPS receivers provide position and/or velocity data to any user on the Earth&rsquo / s surface independent of his position. Yet, there are some conditions that the receiver encounters difficulties, such as weather conditions and some blockage problems due to buildings, trees etc. Due to these difficulties, GPS receivers&rsquo / errors increase. On the other hand, IMU works with respect to Newton&rsquo / s laws. Thus, in stark contrast with other navigation sensors (i.e. radar, ultrasonic sensors etc.), it is not corrupted by external signals. Owing to this feature, IMU is used in almost all navigation applications. However, it has some disadvantages such as possible alignment errors, computational errors and instrumentation errors (e.g., bias, scale factor, random noise, nonlinearity etc.). Therefore, a fusion or integration of GPS and IMU provides a more accurate navigation data compared to only GPS or only IMU navigation data. v In this thesis, loosely coupled GPS/IMU integration systems are implemented using feed forward and feedback configurations. The mechanization equations, which convert the IMU navigation data (i.e. acceleration and angular velocity components) with respect to an inertial reference frame to position, velocity and orientation data with respect to any desired frame, are derived for the geographical frame. In other words, the mechanization equations convert the IMU data to the Inertial Navigation System (INS) data. Concerning this conversion, error model of INS is developed using the perturbation of the mechanization equations and adding the IMU&rsquo / s sensor&rsquo / s error model to the perturbed mechanization equation. Based on this error model, a Kalman filter is constructed. Finally, current navigation data is calculated using IMU data with the help of the mechanization equations. GPS receiver supplies external measurement data to Kalman filter. Kalman filter estimates the error of INS using the error mathematical model and current navigation data is updated using Kalman filter error estimates. Within the scope of this study, some real experimental tests are carried out using the software developed as a part of this study. The test results verify that feedback GPS/INS integration is more accurate and reliable than feed forward GPS/INS. In addition, some tests are carried out to observe the results when the GPS receiver&rsquo / s data lost. In these tests also, the feedback GPS/INS integration is observed to have better performance than the feed forward GPS/INS integration.
18

Potential and application fields of lightweight hydraulic components in multi-material design

Ulbricht, Andreas, Gude, Maik, Barfuß, Daniel, Birke, Michael, Schwaar, Andree, Czulak, Andrzej January 2016 (has links)
Hydraulic systems are used in many fields of applications for different functions like energy storage in hybrid systems. Generally the mass of hydraulic systems plays a key role especially for mobile hydraulics (construction machines, trucks, cars) and hydraulic aircraft systems. The main product properties like energy efficiency or payload can be improved by reducing the mass. In this connection carbon fiber reinforced plastics (CFRP) with their superior specific strength and stiffness open up new chances to acquire new lightweight potentials compared to metallic components. However, complex quality control and failure identification slow down the substitution of metals by fiber-reinforced plastics (FRP). But the lower manufacturing temperatures of FRP compared to metals allow the integration of sensors within FRP-components. These sensors then can be advantageously used for many functions like quality control during the manufacturing process or structural health monitoring (SHM) for failure detection during their life cycle. Thus, lightweight hydraulic components made of composite materials as well as sensor integration in composite components are a main fields of research and development at the Institute of Lightweight Engineering and Polymer Technology (ILK) of the TU Dresden as well as at the Leichtbau-Zentrum Sachsen GmbH (LZS).
19

Machine Learning for Spatial Positioning for XR Environments

Alraas, Khaled January 2024 (has links)
This bachelor's thesis explores the integration of machine learning (ML) with sensor fusion techniques to enhance spatial data accuracy in Extended Reality (XR) environments. With XR's revolutionary impact across various sectors, accurate localization in virtual environments becomes imperative. The thesis conducts a comprehensive literature review, highlighting advancements in indoor positioning technologies and the pivotal role of machine learning in refining sensor fusion for precise localization. It underscores the challenges in the XR field, such as signal interference, device heterogeneity, and data processing complexities. Through critical analysis, this study aims to bridge the gap in practical application of ML, offering insights into developing scalable solutions for immersive virtual productions. It offers insights into the practical integration of advanced machine learning techniques in XR applications, thereby providing valuable implications for technology development and user experience in XR. This contribution is not merely theoretical; it showcases practical applications and advancements in real-time processing and adaptability in complex environments, aligning well with existing research and extending it by addressing scalability and practical implementation challenges in XR environments. This study identifies key themes in the integration of ML with sensor fusion for XR, such as the enhancement of spatial data accuracy, challenges in real-time processing, and the need for scalable solutions. It concludes that the fusion of ML and sensor technologies not only enhances the accuracy of XR environments but also paves the way for more immersive and realistic virtual experiences.

Page generated in 0.1474 seconds