• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

System integration of electronic functionality in packaging application

Unander, Tomas January 2011 (has links)
Sensor applications are becoming increasingly important as products are now being requested to be more and more intelligent and safe. As the costs involved in sensor technology decrease its usage will spread to new market segments including new areas with products that have never previously used such functionalities, including, wood fibre based products for packaging, hygiene or graphical use. Currently there is a significant interest in developing technology that will allow packages to become interactive and be integrated with digital services accessible on the Internet. In this thesis, the system integration of a hybrid RFID based sensor platform is presented. This proposed platform provides a trade-off between the communication performance and its compatibility with international standards and also includes flexibility in on‐package customization, including the type and number of sensors. In addition it combines the use of traditional silicon based electronics with printed electronics directly onto wood fibre based materials so as to enable the possibility of creating smart packages. Together with the system integration of the sensor platform, five printed moisture sensor concepts that are designed to work with the sensor platform are presented and characterized. Firstly, there is a moisture sensor that shows a good correlation to the moisture content of wood fibre based substrates. The second one involves a sensor that detects high relative humidity levels in the air and the third is an action activated energy cell that provides power when activated by moisture. The fourth one deals with two types of moisture sensors that utilize silver nano-particles in order to measure the relative humidity in the air. The final one is a printable touch sensitive sensor that is sensitive to the moisture contained in the hand. A concept of remote moisture sensing that utilizes ordinary low cost RFID tags has also been presented and characterized. The main focus is thus on system integration to, by combining silicon based electronics with printed electronics, find the most low cost solution with regards to flexibility, sensor functions and still meet the communication standards. / När efterfrågan på mer intelligenta och säkra produkter ökar så ökar även intresset för olika typer av sensorer. När kostnaden för dessa sensorer sjunker så kommer användandet av dessa att utökas till nya marknadssegment som tidigare inte använt denna typ av funktionalitet, som tillexempel pappersbaserade förpackningar, hygienartiklar och papper för grafiskttryck. Det är för närvarande ett stort intresse att utveckla tekniker som tillåter förpackningar att bli interaktiva och integrerade med olika digitala tjänster kopplade till Internet. I denna avhandling så presenteras systemintegrationen av en RFID baserad sensor plattform som tillhandahåller en avvägning mellan kommunikationsprestanda, kompabilitet med internationella standarder och kundanpassningsflexibilitet. Där man direkt på förpackningen kombinerar fördelarna med traditionell kiselbaserad elektronik med trycktelektronik för att kunna skapa intelligenta förpackningar. I avhandlingen presenteras och utvärderas även fem trycka fuktsensorer som är designade att kunna användas tillsammans med sensor plattformen. Den första sensorn mäter fukthalten i cellulosabaserade substrat. Den andra kan detektera höga fukthalter i luften. Den tredje, som aktiveras vid en händelse, producerar en elektrisk ström när den blir fuktig. Den fjärde sensorn använder sig av silverbaserade partiklar i nanostorlek för att mäta fukthalten i luften. Den femte sensorn är en beröringskänslig sensor som ger utslag av fukten i handen. Utöver dessa sensorer så utvärderas även ett koncept med en fuktsensor som kan läsas av på avstånd. Fokus är således att på system integrationsnivå, med hjälp av att kombinera kisel elektronik med tryckt elektronik, hitta den mest kostnadseffektiva lösningen med avseende på flexibilitet, sensor funktionalitet och att även kunna möta kommunikationsstandarderna.
2

Dataflow-processing element for a cognitive sensor platform

McDermott, Mark William, active 2014 26 June 2014 (has links)
Cognitive sensor platforms are the next step in the evolution of intelligent sensor platforms. These platforms have the capability to reason about both their external environment and internal conditions and to modify their processing behavior and configuration in a continuing effort to optimize their operational life and functional utility. The addition of cognitive capabilities is necessary for unattended sensor systems as it is generally not feasible to routinely replace the battery or the sensor(s). This platform provides a chassis that can be used to compose embedded sensor systems from composable elements. The composable elements adhere to a synchronous data flow (SDF) protocol to communicate between the elements using channels. The SDF protocol provides the capability to easily compose heterogeneous systems of multiple processing elements, sensor elements, debug elements and communications elements. The processing engine for this platform is a Dataflow-Processing Element (DPE) that receives, processes and dispatches SDF data tokens. The DPE is specifically designed to support the processing of SDF tokens using microcoded actors where programs are assembled by instantiating actors in a graphical modeling tool and verifying that the SDF protocol is adhered to. / text
3

Improvement and evaluation of the Integrated Biosensor Platform

Wallin Herlöfsson, Simon January 2016 (has links)
With a rising demand for low cost solutions to healthcare services, analysis, and toxicology, the Integrated Biosensor Platform developed by Acreo Swedish ICT and Linköping University, fills the gap where conventional sensors are not suitable. This report focuses the update of hardware and software in order to increase stability, introduce new sensors, and allow for wireless communication through NFC. Positive result and increased stability is presented, when measuring with a stable reference potential. The potential of NFC is shown in a breadboard setup and problems when printing an antenna is elaborated in terms of coil turns and size. An ethanol sensor is introduced to the platform and discussion manly focuses on characterization of the sensor. A potentiometric setup is also tested with low results and the problems of the current platform as a potentiometric sensor is discussed. From the collective results and a broader look at society is the justification of the platform existence evaluated. The need for the platform, especially as a mean to solve health problems in development countries, is argued to justify the environmental footprint of a disposable platform. / Med en ökad efterfrågan på tjänster inom hälsovård, analys, och toxikologi är målet för Integrated Biosensor Platform från Acreo Swedish ICT och Linköpings Universitet, att fylla gapet där konventionella sensorer inte är brukliga. Den här rapporten fokuserar på uppdateringen av hård och mjukvara för att öka stabiliteten, introduktionen av nya sensorer samt möjligheten till trådlös kommunikation genom NFC. Positiva resultat och ökad stabilitet presenteras med introduktionen av en stabil referens spänning. NFC och dess möjligheter testas i utvecklingsmiljö och problem diskuteras i samband med tryckta antenner utifrån storlek och design. En ethanolsensor inkluderas till plattformen och resultatet utvärderas främst från användningsområden och karaktärisering av sensorn. En potentiometrisk konfiguration av plattformen testas med lågt resultat och problemen med den nuvarande plattformen som potentiometrisk sensor presenteras. En samlad utvärdering av plattformens existensberättigande görs från både resultat som rapporten presenterat och en omvärldsanalys. Behovet av plattformen är, framför allt som en lösning till hälsovård i utvecklingsländer, ansett att rättfärdiga dess negativa miljöpåverkan som en "engångssensor".
4

Multi-sensor platforms for the geophysical evaluation of sensitive archaeological landscapes. Evaluation of and improvement of the MSP40 mobile sensor device for rapid multi-technique and low impact measurements on archaeological sites with vulnerable soil.

Parkyn, Andrew K. January 2012 (has links)
Mobile platforms for archaeological purposes have increased in use over the last 20 years with many of the developments coming from Continental Europe. Mobile platform developments have mainly focused on one type of instrumentation, offering multiple sensors, depths of detection or frequencies. This development of mobile platforms has focused on data acquisition rates but has not considered the physical impact on the soil. The Geoscan Research Mobile Sensor Platform (MSP40) was intended to improve survey efficiency and remain a lightweight system. The platform can collect two earth resistance configurations that show directional variation of the current flow through soil. Additional sensors were integrated on to the square frame of the hand-pulled cart to record simultaneous fluxgate gradiometer data and a microtopographic surveys. Ground based geophysical investigation will always have a physical impact on a site. The MSP40 is no exception but careful selection of wheel types and the lightweight frame limit the damage compared to many mobile arrays. The MSP40 has been tested on a number of different soils at various times of the year with encouraging results; however issues with overcoming the contact resistance of electrodes remain. The continuous collection rate and combination of techniques means a slight drop in data quality is inevitable. However the increased data density, multiple-sensors and improved rate of collection offset reductions in data quality. The research has shown that the MSP40 can perform low impact rapid site assessments on ¿vulnerable¿ sites, whilst maximising the information gained from a single traverse. / AHRC, Geoscan Research
5

Development of Zr(IV) MOF-Enabled Nerve Agent Electrochemical Hydrolysis Sensors

Marlar, Tyler James 15 April 2024 (has links) (PDF)
Nerve agents are acetylcholinesterase inhibitors and among the most toxic chemical warfare agents ever synthesized. Detection of these chemicals is critical for the protection of populations and strategic resources. G-series nerve agents are volatile compounds. V-series nerve agents are persistent phosphonothioate compounds. Persistent nerve agents do not readily volatilize and can contaminate environmental resources for extended periods. While nerve agents are inherently non-electroactive, they can be hydrolyzed to electroactive products compatible with electrochemical sensing. Zr(IV) MOFs are next-generation nanoporous materials, which have been shown to rapidly catalyze nerve agent hydrolysis. In this work, the catalytic processes of MOF-808, a specific Zr(IV) MOF, towards nerve agents are leveraged to develop novel Zr(IV) MOF-enabled electrochemical sensors capable of sensitively detecting both G-series and V-series nerve agents. Initially, a Zr(IV) MOF-enabled potentiometric sensor was developed for G-series nerve agent detection. The potentiometric sensor was tested using G-series nerve agent simulants, dimethyl methylphosphonate (DMMP) and diisopropyl fluorophosphate (DIFP). The potentiometric sensor had a limit-of-detection (LOD) of 185 and 20 µM for DMMP and DIFP, respectively. Following the potentiometric sensor, a Zr(IV) MOF-enabled voltammetric sensing strategy using sequential hydrolysis and detection for low-concentration detection of V-series nerve agents was developed. The full range of operation for the V-series nerve agent sensor was demonstrated using MOF-808 and a V-series nerve agent simulant, demeton-S methylsulphon (DMTS). MOF-808 was shown to rapidly, selectively, and completely hydrolyze DMTS into electroactive products. A LOD of 30 nM for DMTS was measured for this preliminary sensor. A sensor platform was developed to improve sensor applicability with smaller sample sizes and concurrent hydrolysis and detection. Furthermore, various alkaline buffers were studied to minimize background currents. The response of the developed sensor was evaluated for both DMTS and VX and demonstrated an LOD of 4 µM and 10 µM, respectively. The sensor also detected the presence of DMTS and VX from environmental samples in a simulated warfare scenario. This work demonstrates the feasibility of sensitive, rapid, and robust electrochemical sensing of both G-series and V-series nerve agents for in-field applications.
6

Multi-sensor platforms for the geophysical evaluation of sensitive archaeological landscapes : evaluation of, and improvement of, the MSP40 mobile sensor device for rapid multi-technique and low impact measurements on archaeological sites with vulnerable soil

Parkyn, Andrew Keith January 2012 (has links)
Mobile platforms for archaeological purposes have increased in use over the last 20 years with many of the developments coming from Continental Europe. Mobile platform developments have mainly focused on one type of instrumentation, offering multiple sensors, depths of detection or frequencies. This development of mobile platforms has focused on data acquisition rates but has not considered the physical impact on the soil. The Geoscan Research Mobile Sensor Platform (MSP40) was intended to improve survey efficiency and remain a lightweight system. The platform can collect two earth resistance configurations that show directional variation of the current flow through soil. Additional sensors were integrated on to the square frame of the hand-pulled cart to record simultaneous fluxgate gradiometer data and a microtopographic surveys. Ground based geophysical investigation will always have a physical impact on a site. The MSP40 is no exception but careful selection of wheel types and the lightweight frame limit the damage compared to many mobile arrays. The MSP40 has been tested on a number of different soils at various times of the year with encouraging results; however issues with overcoming the contact resistance of electrodes remain. The continuous collection rate and combination of techniques means a slight drop in data quality is inevitable. However the increased data density, multiple-sensors and improved rate of collection offset reductions in data quality. The research has shown that the MSP40 can perform low impact rapid site assessments on 'vulnerable' sites, whilst maximising the information gained from a single traverse.
7

Wireless Multi-Sensor Feedback Systems for SportsPerformance Monitoring : Design and Development

Sturm, Dennis January 2012 (has links)
Wireless applications have become a common part of daily life. Whether it is mobile phones, the Wi-Fi router at home, the keycard which has replaced the car key, a radio frequency identification access system to a building or a Bluetooth headset for your computer or phone, the means of modern wireless data exchange is an omnipresent technology. In sports, the market is in its infancy for wireless, technical applications or gadgets. Only heart rate monitors and GPS watches are currently used by recreational athletes. Even though most of the larger sports equipment companies regularly launch new products related to sports performance monitoring and mobile phone technology, product innovation leaps are rare.In this work the design of a wireless sports performance measurement platform is presented. Using the example of kayaking, this platform is configured as a paddle performance measuring system, the Kayak XL System, which can monitor propulsive paddle force, paddle kinematics and boat velocity, interalia. A common mobile phone platform has been chosen as the user interface for this system. The design approach focussing on user requests, demands and expectations in combination with the process of iterative technical development are unveiled in this thesis. An evaluation of the system is presented and the work is finalised with an overview of further systems which have been designed based on the developed measurement platform. The Kayak XL System is a flexible system designed to be mounted onto any standard kayak paddle and installed in any competition kayak. Versatility, unobtrusiveness and usability were major design concerns. The developed system consists of four modules plus a software which has been designed for Android mobile phones. The phone communicates with each of the four modules trough Bluetooth radio. These four modules are also referred to as nodes and have specific measurement purposes. Two nodes have been designed to measure paddle force and kinematics, one node has the purpose to measure foot stretcher force and boat motion data, and the fourth node enables a more convenient method of calibrating paddle force measurement. The fourth node is therefore only needed prior to performance data acquisition. Results show that paddle and foot stretcher force can be measured with a resolution below 1N after calibration. Installing the paddle nodes on a previously configured paddle without repeated calibration is facilitated with the compromise of a doubled error margin. The default sampling frequency is set to 100 Hz and can, like all system parameters, be configured on the mobile phone. Real-time computation of complex performance parameters is only limited by the phone CPU. The system adds twice 109 g to the paddle and approximately 850 g to the kayak, excluding the mass of the mobile phone / <p>QC 20120827</p>
8

Design and Development of a Passive Infra-Red-Based Sensor Platform for Outdoor Deployment

Upadrashta, Raviteja January 2017 (has links) (PDF)
This thesis presents the development of a Sensor Tower Platform (STP) comprised of an array of Passive Infra-Red (PIR) sensors along with a classification algorithm that enables the STP to distinguish between human intrusion, animal intrusion and clutter arising from wind-blown vegetative movement in an outdoor environment. The research was motivated by the aim of exploring the potential use of wireless sensor networks (WSNs) as an early-warning system to help mitigate human-wildlife conflicts occurring at the edge of a forest. While PIR sensors are in commonplace use in indoor settings, their use in an outdoor environment is hampered by the fact that they are prone to false alarms arising from wind-blown vegetation. Every PIR sensor is made up of one or more pairs of pyroelectric pixels arranged in a plane, and the orientation of interest in this thesis is one in which this plane is a vertical plane, i.e., a plane perpendicular to the ground plane. The intersection of the Field Of View (FOV) of the PIR sensor with a second vertical plane that lies within the FOV of the PIR sensor, is called the virtual pixel array (VPA). The structure of the VPA corresponding to the plane along which intruder motion takes place determines the form of the signal generated by the PIR sensor. The STP developed in this thesis employs an array of PIR sensors designed so as to result in a VPA that makes it easier to discriminate between human and animal intrusion while keeping to a small level false alarms arising from vegetative motion. The design was carried out in iterative fashion, with each successive iteration separated by a lengthy testing phase. There were a total of 5 design iterations spanning a total period of 14 months. Given the inherent challenges involved in gathering data corresponding to animal intrusion, the testing of the SP was carried out both using real-world data and through simulation. Simulation was carried out by developing a tool that employed animation software to simulate intruder and animal motion as well as some limited models of wind-blown vegetation. More specifically, the simulation tool employed 3-dimensional models of intruder and shrub motion that were developed using the popular animation software Blender. The simulated output signal of the PIR sensor was then generated by calculating the area of the 3-dimensional intruder when projected onto the VPA of the STP. An algorithm for efficiently calculating this to a good degree of approximation was implemented in Open Graphics Library (OpenGL). The simulation tool was useful both for evaluating various competing design alternatives as well as for developing an intuition for the kind of signals the SP would generate without the need for time-consuming and challenging animal-motion data collection. Real-world data corresponding to human motion was gathered on the campus of the Indian Institute of Science (IISc), while animal data was recorded at a dog-trainer facility in Kengeri as well as the Bannerghatta Biological Park, both located in the outskirts of Bengaluru. The array of PIR sensors was designed so as to result in a VPA that had good spatial resolution. The spatial resolution capabilities of the STP permitted distinguishing between human and animal motion with good accuracy based on low-complexity, signal-energy computations. Rejecting false alarms arising from vegetative movement proved to be more challenging. While the inherent spatial resolution of the STP was very helpful, an alternative approach turned out to have much higher accuracy, although it is computationally more intensive. Under this approach, the intruder signal, either human or animal, was modelled as a chirp waveform. When the intruder moves along a circular arc surrounding the STP, the resulting signal is periodic with constant frequency. However, when the intruder moves along a more likely straight-line path, the resultant signal has a strong chirp component. Clutter signals arising from vegetative motion does not exhibit this chirp behavior and an algorithm that exploited this difference turned in a classification accuracy in excess of 97%.

Page generated in 0.0691 seconds