Spelling suggestions: "subject:"thick oxidation""
1 |
Targeted Disruption of the Glutaredoxin 1 Gene Does Not Sensitize Adult Mice to Tissue Injury Induced by Ischemia/Reperfusion and HyperoxiaHo, Ye Shih, Xiong, Ye, Ho, Dorothy S., Gao, Jinping, Chua, Balvin H.L., Pai, Harish, Mieyal, John J. 01 November 2007 (has links)
To understand the physiological function of glutaredoxin, a thiotransferase catalyzing the reduction of mixed disulfides of protein and glutathione, we generated a line of knockout mice deficient in the cytosolic glutaredoxin 1 (Grx1). To our surprise, mice deficient in Grx1 were not more susceptible to acute oxidative insults in models of heart and lung injury induced by ischemia/reperfusion and hyperoxia, respectively, suggesting that either changes in S-glutathionylation status of cytosolic proteins are not the major cause of such tissue injury or developmental adaptation in the Glrx1-knockout animals alters the response to oxidative insult. In contrast, mouse embryonic fibroblasts (MEFs) isolated from Grx1-deficient mice displayed an increased vulnerability to diquat and paraquat, but they were not more susceptible to cell death induced by hydrogen peroxide (H2O2) and diamide. A deficiency in Grx1 also sensitized MEFs to protein S-glutathionylation in response to H2O2 treatment and retarded deglutathionylation of the S-glutathionylated proteins, especially for a single prominent protein band. Additional experiments showed that MEFs lacking Grx1 were more tolerant to apoptosis induced by tumor necrosis factor αplus actinomycin D. These findings suggest that various oxidants may damage the cells via distinct mechanisms in which the action of Grx1 may or may not be protective and Grx1 may exert its function on specific target proteins.
|
2 |
Development of Zr(IV) MOF-Enabled Nerve Agent Electrochemical Hydrolysis SensorsMarlar, Tyler James 15 April 2024 (has links) (PDF)
Nerve agents are acetylcholinesterase inhibitors and among the most toxic chemical warfare agents ever synthesized. Detection of these chemicals is critical for the protection of populations and strategic resources. G-series nerve agents are volatile compounds. V-series nerve agents are persistent phosphonothioate compounds. Persistent nerve agents do not readily volatilize and can contaminate environmental resources for extended periods. While nerve agents are inherently non-electroactive, they can be hydrolyzed to electroactive products compatible with electrochemical sensing. Zr(IV) MOFs are next-generation nanoporous materials, which have been shown to rapidly catalyze nerve agent hydrolysis. In this work, the catalytic processes of MOF-808, a specific Zr(IV) MOF, towards nerve agents are leveraged to develop novel Zr(IV) MOF-enabled electrochemical sensors capable of sensitively detecting both G-series and V-series nerve agents. Initially, a Zr(IV) MOF-enabled potentiometric sensor was developed for G-series nerve agent detection. The potentiometric sensor was tested using G-series nerve agent simulants, dimethyl methylphosphonate (DMMP) and diisopropyl fluorophosphate (DIFP). The potentiometric sensor had a limit-of-detection (LOD) of 185 and 20 µM for DMMP and DIFP, respectively. Following the potentiometric sensor, a Zr(IV) MOF-enabled voltammetric sensing strategy using sequential hydrolysis and detection for low-concentration detection of V-series nerve agents was developed. The full range of operation for the V-series nerve agent sensor was demonstrated using MOF-808 and a V-series nerve agent simulant, demeton-S methylsulphon (DMTS). MOF-808 was shown to rapidly, selectively, and completely hydrolyze DMTS into electroactive products. A LOD of 30 nM for DMTS was measured for this preliminary sensor. A sensor platform was developed to improve sensor applicability with smaller sample sizes and concurrent hydrolysis and detection. Furthermore, various alkaline buffers were studied to minimize background currents. The response of the developed sensor was evaluated for both DMTS and VX and demonstrated an LOD of 4 µM and 10 µM, respectively. The sensor also detected the presence of DMTS and VX from environmental samples in a simulated warfare scenario. This work demonstrates the feasibility of sensitive, rapid, and robust electrochemical sensing of both G-series and V-series nerve agents for in-field applications.
|
3 |
Oxidação da proteína dissulfeto isomerase por peroxinitrito: cinética, produtos e implicações biológicas / Oxidation of the protein disulfide isomerase by peroxynitrite: kinetics, products and biological implicationPeixoto, Álbert Souza 27 October 2017 (has links)
Proteína dissulfeto isomerase (PDI) é uma ditiol-dissulfeto óxido redutase ubíqua que é responsável por uma série de funções celulares, inclusive na sinalização celular e nas respostas a eventos que causam dano celular. Entretanto, a PDI pode se tornar disfuncional através das modificações pós-traducionais, incluindo as promovidas por oxidantes biológicos. Estes oxidantes são provavelmente os responsáveis pelas modificações oxidativas pós-traducionais da PDI que foram detectadas em várias condições associadas ao estresse oxidativo, levando à disfunção da proteína. Devido a falta de estudos cinéticos com a PDI nativa e a falta de caracterização dos produtos dessas reações, investigamos se a diminuição da fluorescência da PDI nativa pode ser empregada para estudos da cinética de oxidação com peróxido de hidrogênio. Posteriormente, investigamos a cinética e os produtos da reação entre PDI e peroxinitrito. Nossos experimentos mostraram que a oxidação por excesso de peróxido de hidrogênio levava a uma diminuição da fluorescência de forma dependente do tempo e da concentração do oxidante, permitindo a determinação da constante de velocidade de segunda ordem (k = (17,3±1,3) M-1 s-1, pH 7,4, 25 ºC). Relevantemente, mostramos que o processo era totalmente revertido por DDT, mostrando que o peróxido de hidrogênio oxida quase que exclusivamente os grupos ditióis da PDI (Cys53 e Cys56 e Cys397 e Cys400). Utilizando a mesma abordagem para estudar a oxidação da PDI por peroxinitrito, notamos que o decréscimo da fluorescência intrínseca da PDI nativa e a velocidade só era proporcional à concentrações sub-estequiométricas ou estequiométricas do oxidante em relação aos tióis reativos da PDI. Somente nessas condições o processo se mostrava reversível por DDT, indicando que os ditióis da PDI eram o alvo preferencial do peroxinitrito mas que a oxidação de outros resíduos também ocorria. A reação dos tióis reativos da PDI com peroxinitrito foi considerada relativamente rápida (6,9 ± 0,6 × 104 M-1 s-1, pH 7,4, 25 °C), e os resíduos de Cys reativos dos domínios a e a\' aparentam reagir com constantes de velocidade similares. Experimentos de proteólise limitada, simulações cinética e análises de MS e MS/MS confirmaram que o peroxinitrito oxida preferencialmente os tióis redox ativos da PDI para os ácidos sulfênicos correspondentes, que, subsequentemente, reagem com os tióis vizinhos, produzindo dissulfetos (Cys53- Cys56 e Cys397- Cys400). Entretanto, uma fração de peroxinitrito decai para radicais levando à hidroxilação e nitração de outros resíduos próximos ao sítio redox ativo (Trp52 Trp396 e Tyr393). Assim, investigamos também a oxidação da PDI por excesso de peroxinitrito em relação aos grupos tióis reativos por diferentes metodologias. Experimentos de SDS-PAGE, western-blot e atividade redutase mostraram que o peroxinitrito promove inativação, nitração e agregação da PDI de forma dependente da concentração de peroxinitrito. Análises de MS e MS/MS mostraram que, em excesso, o peroxinitrito promove nitração (Tyr43, Tyr49, Tyr196, Tyr393, Trp52, Trp396) e hidroxilação (Trp52, Trp396) da PDI. Em síntese, nossos estudos contribuem para melhor compreensão da oxidação da PDI por peroxinitrito e de suas possíveis consequências biológicas. / Protein disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, including in cellular signaling and responses to cell-damaging events. Nevertheless, PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants. These oxidants are likely responsible for the oxidative post-translational modifications of PDI, which have detected under various conditions associated with oxidative stress, leading to protein dysfunction. However, the kinetics of the reactions of PDI with biological oxidants received limited studies and the products of these reactions were not characterized. Here, we examined whether the decrease in PDI fluorescence can be employed to follow the kinetics of the reaction of the full-length protein with biological oxidants. Also, we investigated the kinetics and products of the reaction between PDI and peroxynitrite. Our experiments showed that oxidation by excess hydrogen peroxide led to a decrease of PDI intrinsic fluorescence in a time- and concentration-dependent manner , permitting the determination of the second-order rate constant of the reaction (k = (17.3 ± 1.3 ) M1 s-1, pH 7.4, 25 ° C). The oxidation was reversed by DDT, indicating that hydrogen peroxide oxidizes mainly PDI dithiols (Cys53 and Cys56 and Cys397 and Cys400). Using the same approach to study PDI oxidation by peroxynitrite we noted that the decrease of the native PDI fluorescence was proportional to sub-stoichiometric or stoichiometric concentrations of the oxidant relative to that of PDI reactive thiols. Only under these conditions, PDI oxidation was reversed by DDT, indicating that PDI dithiols were the preferred target of peroxynitrite but that oxidation of other residues also occurred. The reaction of the active redox thiols of the PDI with peroxynitrite can be considered relatively fast (6.9 ± 0.6 × 104 M-1 s-1, pH 7.4, 25 ° C), and the reactive Cys residues of domains a and a\' were kinetically indistinguishable. Limited proteolysis experiments, kinetic simulations, and MS and MS/MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which subsequently react with the resolving thiols to produce disulfides (Cys53-Cys56 and Cys397-Cys400). However, a fraction of peroxynitrite decays to radicals leading to hydroxylation and nitration to other residues located close to the active site (Trp52 Trp396 and Tyr393). SDS-PAGE, western blotting and inhibition of the reductase activity experiments confirmed that excess peroxynitrite promotes further PDI oxidation, nitration, inactivation and aggregation in a concentration-dependent manner. MS and MS/MS analyzes showed that peroxynitrite in a ten times excess relative to PDI reactive thiols promote PDI nitration (Tyr43, Tyr49, Tyr196, Tyr393, Trp52, Trp396) and hydroxylation (Trp52, Trp396). In conclusion, our studies contribute to a better understanding of PDI oxidation by peroxynitrite and its possible biological consequences
|
4 |
Oxidação da proteína dissulfeto isomerase por peroxinitrito: cinética, produtos e implicações biológicas / Oxidation of the protein disulfide isomerase by peroxynitrite: kinetics, products and biological implicationÁlbert Souza Peixoto 27 October 2017 (has links)
Proteína dissulfeto isomerase (PDI) é uma ditiol-dissulfeto óxido redutase ubíqua que é responsável por uma série de funções celulares, inclusive na sinalização celular e nas respostas a eventos que causam dano celular. Entretanto, a PDI pode se tornar disfuncional através das modificações pós-traducionais, incluindo as promovidas por oxidantes biológicos. Estes oxidantes são provavelmente os responsáveis pelas modificações oxidativas pós-traducionais da PDI que foram detectadas em várias condições associadas ao estresse oxidativo, levando à disfunção da proteína. Devido a falta de estudos cinéticos com a PDI nativa e a falta de caracterização dos produtos dessas reações, investigamos se a diminuição da fluorescência da PDI nativa pode ser empregada para estudos da cinética de oxidação com peróxido de hidrogênio. Posteriormente, investigamos a cinética e os produtos da reação entre PDI e peroxinitrito. Nossos experimentos mostraram que a oxidação por excesso de peróxido de hidrogênio levava a uma diminuição da fluorescência de forma dependente do tempo e da concentração do oxidante, permitindo a determinação da constante de velocidade de segunda ordem (k = (17,3±1,3) M-1 s-1, pH 7,4, 25 ºC). Relevantemente, mostramos que o processo era totalmente revertido por DDT, mostrando que o peróxido de hidrogênio oxida quase que exclusivamente os grupos ditióis da PDI (Cys53 e Cys56 e Cys397 e Cys400). Utilizando a mesma abordagem para estudar a oxidação da PDI por peroxinitrito, notamos que o decréscimo da fluorescência intrínseca da PDI nativa e a velocidade só era proporcional à concentrações sub-estequiométricas ou estequiométricas do oxidante em relação aos tióis reativos da PDI. Somente nessas condições o processo se mostrava reversível por DDT, indicando que os ditióis da PDI eram o alvo preferencial do peroxinitrito mas que a oxidação de outros resíduos também ocorria. A reação dos tióis reativos da PDI com peroxinitrito foi considerada relativamente rápida (6,9 ± 0,6 × 104 M-1 s-1, pH 7,4, 25 °C), e os resíduos de Cys reativos dos domínios a e a\' aparentam reagir com constantes de velocidade similares. Experimentos de proteólise limitada, simulações cinética e análises de MS e MS/MS confirmaram que o peroxinitrito oxida preferencialmente os tióis redox ativos da PDI para os ácidos sulfênicos correspondentes, que, subsequentemente, reagem com os tióis vizinhos, produzindo dissulfetos (Cys53- Cys56 e Cys397- Cys400). Entretanto, uma fração de peroxinitrito decai para radicais levando à hidroxilação e nitração de outros resíduos próximos ao sítio redox ativo (Trp52 Trp396 e Tyr393). Assim, investigamos também a oxidação da PDI por excesso de peroxinitrito em relação aos grupos tióis reativos por diferentes metodologias. Experimentos de SDS-PAGE, western-blot e atividade redutase mostraram que o peroxinitrito promove inativação, nitração e agregação da PDI de forma dependente da concentração de peroxinitrito. Análises de MS e MS/MS mostraram que, em excesso, o peroxinitrito promove nitração (Tyr43, Tyr49, Tyr196, Tyr393, Trp52, Trp396) e hidroxilação (Trp52, Trp396) da PDI. Em síntese, nossos estudos contribuem para melhor compreensão da oxidação da PDI por peroxinitrito e de suas possíveis consequências biológicas. / Protein disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, including in cellular signaling and responses to cell-damaging events. Nevertheless, PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants. These oxidants are likely responsible for the oxidative post-translational modifications of PDI, which have detected under various conditions associated with oxidative stress, leading to protein dysfunction. However, the kinetics of the reactions of PDI with biological oxidants received limited studies and the products of these reactions were not characterized. Here, we examined whether the decrease in PDI fluorescence can be employed to follow the kinetics of the reaction of the full-length protein with biological oxidants. Also, we investigated the kinetics and products of the reaction between PDI and peroxynitrite. Our experiments showed that oxidation by excess hydrogen peroxide led to a decrease of PDI intrinsic fluorescence in a time- and concentration-dependent manner , permitting the determination of the second-order rate constant of the reaction (k = (17.3 ± 1.3 ) M1 s-1, pH 7.4, 25 ° C). The oxidation was reversed by DDT, indicating that hydrogen peroxide oxidizes mainly PDI dithiols (Cys53 and Cys56 and Cys397 and Cys400). Using the same approach to study PDI oxidation by peroxynitrite we noted that the decrease of the native PDI fluorescence was proportional to sub-stoichiometric or stoichiometric concentrations of the oxidant relative to that of PDI reactive thiols. Only under these conditions, PDI oxidation was reversed by DDT, indicating that PDI dithiols were the preferred target of peroxynitrite but that oxidation of other residues also occurred. The reaction of the active redox thiols of the PDI with peroxynitrite can be considered relatively fast (6.9 ± 0.6 × 104 M-1 s-1, pH 7.4, 25 ° C), and the reactive Cys residues of domains a and a\' were kinetically indistinguishable. Limited proteolysis experiments, kinetic simulations, and MS and MS/MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which subsequently react with the resolving thiols to produce disulfides (Cys53-Cys56 and Cys397-Cys400). However, a fraction of peroxynitrite decays to radicals leading to hydroxylation and nitration to other residues located close to the active site (Trp52 Trp396 and Tyr393). SDS-PAGE, western blotting and inhibition of the reductase activity experiments confirmed that excess peroxynitrite promotes further PDI oxidation, nitration, inactivation and aggregation in a concentration-dependent manner. MS and MS/MS analyzes showed that peroxynitrite in a ten times excess relative to PDI reactive thiols promote PDI nitration (Tyr43, Tyr49, Tyr196, Tyr393, Trp52, Trp396) and hydroxylation (Trp52, Trp396). In conclusion, our studies contribute to a better understanding of PDI oxidation by peroxynitrite and its possible biological consequences
|
5 |
Efeitos da n-acetilcisteína sobre a toxicidade do ditelureto de difenila no encéfalo de camundongos / Effects of n-acetylcysteine about diphenyl ditelluride toxicity in mice brainComparsi, Bruna 18 November 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / The diphenyl ditelluride (PhTe)2 is one of the most toxic organic compounds of tellurium which can make their use unsafe. The mechanism(s) involved in (PhTe)2 toxicity is(are) elusive, but thiol oxidation of critical proteins are important targets. Consequently, the possible remedy of its toxicity by thiol-containing compounds is of experimental and clinical interest. Therefore, this study aimed to evaluate the toxicity of in vivo exposure to (PhTe)2 from oxidative stress biomarkers and behavioral parameters in adult mice and the possible protective effect of N-acetylcysteine (NAC). They evaluated parameters of oxidative stress and behavior in mice. In order to alleviate the toxicity, NAC was administered before (3 days) and simultaneously (PhTe)2 (7 days). Mice were separated into six groups receiving daily injections of (1) Potassium phosphate buffer (TFK) (2.5 ml/kg, intraperitonealy (i.p.)) plus canola oil (10 ml/kg, subcutaneously (s.c.)), (2) NAC (100 mg/kg, i.p.) plus canola oil s.c., (3) TFK i.p. plus (PhTe)2 (10 μmol/kg, s.c.), (4) TFK i.p. plus (PhTe)2 (50 μmol/kg, s.c.), (5) NAC plus (PhTe)2 (10 μmol/kg, s.c.), and (6) NAC plus (PhTe)2 (50 μmol/kg, s.c.). Treatment with (PhtE) started on day 2 of treatment with NAC. The results demonstrate that (PhTe)2 induced behavioral changes in locomotor activity at a concentration of 50 μmol/kg and NAC did not change the effect of (PhTe)2. Motor coordination and lift the bar were compromised and both showed severe motor abnormalities in test animals independent of concentration of (PhTe)2 . The (PhTe)2 also inhibited important selenoenzymes, thioredoxin reductase (at concentrations of 10 μmol/kg and 50 μmol/kg) and glutathione peroxidase (at concentration of 10 μmol/kg) but produced little or no effect on the antioxidant activity of catalase and glutathione reductase. Contrary to expectation, the co-administration of NAC did not protect against deleterious effects (PhTe)2. It was possible to establish high sensitivity of brain tissue compared to the damage (PhTe)2. Other low molecular weight thiols must be investigated to determine whether they may or may not be effective against ditellurides. / O ditelureto de difenila (PhTe)2 é um dos compostos orgânicos de telúrio mais tóxicos, o que pode tornar seu emprego pouco seguro. O mecanismo envolvido na toxicidade do (PhTe)2 ainda é incerto, mas a oxidação de tióis em proteínas são alvos importantes. A partir disso, compostos contendo tiol possívelmente poderiam solucionar ou minimizar a sua toxicidade. Portanto, este estudo teve como objetivo avaliar a toxicidade da exposição in vivo ao (PhTe)2 a partir de biomarcadores de estresse oxidativo e parâmetros comportamentais em camundongos adultos e o possível efeito protetor da N-acetilcisteína (NAC). Foram avaliados parâmetros de estresse oxidativo e comportamentais em camundongos. A fim de mitigar a toxicidade, foi administrado NAC antes (3 dias) e, simultaneamente ao (PhTe)2 (7 dias). Os camundongos foram separados em seis grupos que receberam injeções diárias de (1) Tampão fosfato de potássio (TFK) (2.5 ml/kg, intraperitonealmente (i.p.)) mais óleo de canola (10 ml/kg, subcutaneamente (s.c.)), (2) NAC (100 mg/kg, i.p.) mais óleo de canola s.c., (3) TFK i.p. mais (PhTe)2 (10 μmol/kg, s.c.), (4) TFK i.p. mais (PhTe)2 (50 μmol/kg, s.c.), (5) NAC mais (PhTe)2 (10 μmol/kg, s.c.), e (6) NAC mais (PhTe)2 (50 μmol/kg, s.c.). O tratamento com (PhTe)2 começou no quarto dia de tratamento com NAC. Os resultados demonstram que (PhTe)2 induziu alterações comportamentais na atividade locomotora na concentração de 50 μmol/kg e a NAC não modificou o efeito do (PhTe)2. A coordenação motora e a força de sustentação na barra foram comprometidas e ambas revelaram alterações motoras graves nos animais testados independente da concentração de (PhTe)2. O (PhTe)2 também inibiu selenoenzimas importantes, tiorredoxina redutase (nas concentrações de 10 μmol/kg e 50 μmol/kg) e glutationa peroxidase (na concentração de 10 μmol/kg), mas produziu mínimo ou nenhum efeito sobre a atividade antioxidante da catalase e glutationa redutase. Contrariamente ao esperado, a co-administração com NAC não protegeu contra os efeitos deletérios do (PhTe)2. Foi possível estabelecer grande sensibilidade do tecido cerebral frente aos danos causados pelo (PhTe)2. Outros tióis de baixo peso molecular devem ser investigados para determinar se eles podem ou não ser eficazes contra diteluretos.
|
6 |
ESTUDOS TEÓRICOS E DE MODELAGEM MOLECULAR IN SILICO APLICADOS À INTERAÇÃO ENTRE A ENZIMA DELTA-AMINOLEVULINATO DESIDRATASE E DISSELENETOS DE DIARILA / IN SILICO THEORETICAL AND MOLECULAR MODELING STUDIES APPLIED TO THE BINDING AFFITY OF DIARYL DISELENIDES TO DELTA-AMINOLEVULINIC ACID DEHYDRATASE ENZYMESaraiva, Rogério de Aquino 06 May 2013 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Delta-aminolevulinic acid dehydratase (δ-ALA-D) is an essential metalloprotein found in several biological processes, since it is able to catalyze the formation of porphobilinogen (PBG), a precursor monopyrol of tetrapyrroles (heme and chlorophyll). This enzyme is sensible to heavy metals and other pro-oxidant agents and, consequently, it has been classically used as a protein marker for lead intoxication. Both in vitro and in vivo studies has shown that the organochalcogen diphenyl diselenide [(PhSe)2] could be a promising drug due to present antioxidant, neuroprotective, anti-inflammatory, anti-atherosclerotic and other activities. Contrariwise, (PhSe)2 could also be toxic because it can inhibit the activity of important sulfhydryl enzymes, including δ-ALA-D. Regarding some experimental data, it has been speculated that mammalian δ-ALA-D inhibition can occur via the oxidation of two vicinal thiols located in it active center site. However, no molecular model had been proposed in order to explain this interaction with details. Thus, we aimed to get a further understanding about the interaction involving δ-ALA-D and diselenides using in silico molecular modeling methods, which are consisted in theoretical methods applied in to represent or mimic the behavior and interaction of ligands and enzymes from their structural and thermodynamic information. Docking simulations indicated an important role for π-π interactions involving Phe208 and cation-π interactions involving Lys199 and Arg209 residues with the aromatic ring of (PhSe)2 and analogs bis 4-(clorophenyl) diselenide, bis 4-(methoxyphenyl)diselenide and bis 3-(trifluorometil(phenyl)diselenide. These interactions allowed an approximation between Se atoms and SH of Cys124 (3.3 3.5 Å). The analogs interacted similarly with the active site of δ-ALAD. According to the quantum method MFCC (Molecular Fractionation with Conjugated Caps), interactions involving (PhSe)2 could occur up to 8.5 Å distance from the centroid of active site. Phe208, Phe79, Cys122, Cys124, Pro125, Asp120, Lys199, Lys252 and Cys132 displayed strong attraction energy to (PhSe)2. The representative molecular model is in accordance with in vitro assays and gives mechanistic support to previous speculative mechanism of inhibition. Phenyl moieties in (PhSe)2 can be strongly attracted by aromatic and positive charged residues from δ-ALA-D active site. This allows the approximation of the reactive electrophile moiety Se-Se to the nucleophile S- groups from Cys122, Cys124 and Cys132, facilitating the release of coordinated Zn(II), thiol oxidation and formation of 2 molecules of phenylselenol (PhSeH). In conclusion, the presence of aromatic moieties in (PhSe)2 and its reactive electrophile moiety Se-Se are crucial to δ-ALA-D inhibition, which leads to thiol oxidation and consequent impairment of its activity. / A enzima δ-aminolevulinato desidratase (δ-ALA-D) é uma metaloproteína essencial em vários processos biológicos, uma vez que é responsável por catalisar a formação de porfobilinogênio (PBG), um precursor dos tetrapirrólicos (heme, clorofila). Esta enzima é sensível a metais pesados e outros pró-oxidantes e, dessa forma, tem sido classicamente usada como um marcador na intoxicação por chumbo. Estudos in vitro e in vivo têm demonstrado que o organocalcogênio disseleneto de difenila [(PhSe)2] pode ser um fármaco promissor por demonstrar várias atividades biológicas, incluindo antioxidante, neuroprotetora, anti-inflamatória, anti-aterosclerótica e outras. Por outro lado, o (PhSe)2 e análogos também são tóxicos por inibir a atividade de enzimas sulfidrílicas, incluindo a δ-ALA-D. Baseados em dados experimentais, tem-se especulado que a inibição da δ-ALA-D de mamíferos pode ocorrer via oxidação de dois tióis vizinhos localizados no centro ativo da enzima. No entanto, não se tinha conhecimento de nenhum estudo baseado em modelagem molecular com o intuito de explicar esta interação de forma mais detalhada. Diante disso, objetivamos compreender essas interações a partir da modelagem molecular in silico, que consiste em métodos teóricos aplicados para representar ou mimetizar o comportamento e interação de ligantes e enzimas a partir de informações sobre os requisitos estruturais e termodinâmicos essenciais. Os estudos de docking molecular indicaram um papel importante das interações π-π envolvendo Phe208 e cátion-π envolvendo Lys199 e Arg209 e anéis aromáticos do (PhSe)2 e análogos bis 4-(clorofenil) disseleneto, bis 4-(metoxifenil) disseleneto e bis 3-[trifluorometil(fenil)] disseleneto. Estas interações permitem uma aproximação entre átomos de Se do composto e SH da Cys124 (3.3 3.5 Å). Os análogos também interagem de forma semelhante com o sítio ativo da δ-ALA-D. De acordo com o método MFCC (Fracionamento Molecular com Capas Conjugadas), foi possível observar interações envolvendo o (PhSe)2 e resíduos posicionados até uma distância de 8,5 Å do centroide do ligante. Phe79, Cys122, Cys124, Pro125, Asp120, Lys199, Lys252 e Cys132 demonstraram as maiores energia de interação (atrativa) com o (PhSe)2. O modelo molecular representado está em conformidade com ensaios in vitro e fornece informações importantes que reforçam o mecanismo de inibição especulado. Os grupos fenil do (PhSe)2 são fortemente atraídos por resíduos aromáticos e carregados positivamente presentes no sítio ativo da δ-ALA-D. Dessa forma, permite-se a aproximação da porção eletrófila Se Se ao grupos nucleófilos S dos resíduos Cys122, Cys124 e Cys132, facilitando a liberação de Zn(II), a oxidação dos tiolatos e a formação de duas moléculas de fenilselenol (PhSeH), levando a consequente inibição da atividade da enzima.
|
7 |
Papel de la peroxirredoxina Tpxl y del factor de trascripción Pap1 en la respuesta a H2O2 en Schizossaccharomyces pombeVivancos Prellezo, Ana 02 June 2006 (has links)
La vida aeróbica conlleva la formación de especies reactivas derivadas del oxígeno: el radical hidroxilo (OH·), el ión superóxido (O2·-) y el peróxido de hidrógeno (H2O2). En Schizosaccharomyces pombe, dos rutas controlan las respuestas antioxidantes en respuesta a estrés oxidativo por H2O2: la del factor de transcripción Pap1 y la de la MAP quinasa Sty1. En esta tesis doctoral, hemos determinado que la activación de Pap1 se da en respuesta a dosis moderadas, pero no severas, de H2O2. Hemos identificado a la peroxirredoxina Tpx1 como sensor y transmisor de la señal de estrés oxidativo a Pap1. La inactivación temporal de Tpx1, durante estrés oxidativo severo, por oxidación a sulfínico de su cisteína catalítica inhibe la transmisión de señal a Pap1. En dichas condiciones, se activa la ruta de Sty1, que media la inducción de Srx1, cuya función es reducir y, con ello, reactivar a Tpx1. Finalmente, hemos estudiado el papel esencial de Tpx1 en aerobiosis. / Aerobic life involves formation of reactive oxygen species: hydroxyl radical (OH·), superoxide ion (O2·-) and hydrogen peroxide (H2O2). In Schizosaccharomyces pombe, two pathways respond to H2O2 and trigger independent antioxidant-gene responses: the Pap1 and the Sty1 pathways. In this thesis project, we have determined that the activation of the transcription factor Pap1 occurs only at low, but not elevated, H2O2 concentrations. We have identified the peroxiredoxin Tpx1 as a H2O2-sensor and redox activator of Pap1. The temporal inactivation of Tpx1 during severe oxidative stress, by oxidation of its catalytic cysteine to sulfinic acid, inhibits signal transduction to Pap1. During these conditions, the MAP kinase Sty1 is activated and expression of the sulfiredoxin Srx1 is triggered. Srx1 functions to reduce and thus reactivate Tpx1. Finally, we have analysed the essential function of Tpx1 in aerobiosis.
|
Page generated in 0.1095 seconds