41 |
Optical devices for biochemical sensing in flame hydrolysis deposited glassRuano-Lopez, Jesus M. January 2000 (has links)
No description available.
|
42 |
Sensors and actuators in computer controlled colonoscopyDogramadzi, Sanja January 2001 (has links)
No description available.
|
43 |
Optical biosensing using sol-gel technologyBlyth, David John January 1997 (has links)
No description available.
|
44 |
Passive signal processing techniques for miniature fibre Fabry-Perot interferometric sensorsEzbiri, A. January 1996 (has links)
This thesis describes new signal processing techniques applicable to miniature low finesse Fabry-Perot interferometric sensors. The principle of operation behind the techniques presented resides in the use of the axial modes from a single multimode laser diode to produce a series of phrase shifted interferometric outputs in conjunction with the path imbalance of the sensor microactivity.
|
45 |
The investigation of the oxidation of clavulanic acid at platinum microelectrode sensors for use in process streamsMcNaughtan, Moyra L. January 1996 (has links)
No description available.
|
46 |
Construction and development of a multifunctional measuring device for biomedical applicationsNilsson, Tobias January 2016 (has links)
Lab-on-a-chip technology is a rapidly growing research area. Joining together several disciplines, such as physics, biology and several instances of nanotechnologies. The aim of this research is mainly to produce chips that can do the same types of measurements as large lab equipment and measurement systems, but at a fraction of the size and cost. In this work a multifunctional measuring device have been developed. It can measure optical absorbance and fluorescence while performing a range of potentiometric techniques; including chronoamperometry, linear- and cyclic voltammetry. From all these measurements it is possible to calculate particle concentrations in fluid samples. The aim is to bring simpler and cheaper point of care devices to the public. Without larger losses in accuracy and reliability of the medicinal test. To do this our device is intended to be used with lab-chip, which are capable of amplifying the signals while reducing the sample size. Lab-chips could be used in several areas but the ones being designed with this device are made for biomedical purposes, applying suitable nanostructures and reagents to measure the presence of biomarkers. With these techniques, medicinal diagnostics can be made a few minutes after samples have been collected from patients. Much quicker and more direct than sending the samples to a lab and waiting hours if not days for the results. The measuring device or lab-chip reader will use two different lab-chips in the future. One that is optimised for optical absorbance and the other for fluorescence. Both will work with electrochemical measurements, but at present only the absorbance chip have been available for testing and that without any signal enhancing techniques. Assessment of the reader's capabilities was made with solutions of gold nanoparticles, TMB (tetramethylbenzidine), iron dissolved in PBS (Phosphate-buffed saline) and with a film made of PPV (Poly para-phenylenevinylene). The first two were used to test absorbance; while the iron and PBS have been used to test electrochemical system; and the PPV was coated on a glass substrate and used to test fluorescence. During the optical absorption test, it was found that the reader can distinguish between different concentrations of the various solutions. The results are promising and further removal of signal drifts will improve signals considerably. Fluorescence can be induced and measured with the device. This part of the system is, however, untested in general and future work will show if it is sufficient. The iron solution was tested with three different methods. chronopotentiometry, linear sweep voltammetry and cyclic voltammetry. It was however found that our measurements were distorted in comparison with the expected voltammogram for iron in PBS. Additional peaks were found in the voltammogram and it is believed that these are a result of oxidation of the electrodes on the lab-chip.
|
47 |
Estimation de la direction de marche à partir de capteurs inertiels et magnétiques portés dans la main / Walking direction estimation with handheld inertial and magnetic sensorsCombettes, Christophe 17 October 2016 (has links)
La technologie d’aujourd’hui donne la possibilité à chacun de se localiser grâce à son smartphone. Cependant les milieux intra-muros restent encore relativement dépourvus en service de géolocalisation. Pour des raisons d’ubiquité, les centrales inertielles et magnétiques de technologie MEMS présentes dans les smartphones offrent une solution pour la navigation pédestre. Dans ce contexte la stratégie « Pedestrian Dead-Reckoning » s’avère intéressante car elle limite la dérive temporelle de l’estimation de la distance parcourue. Cependant, l’estimation de la direction de marche s’avère critique dans la stratégie PDR, les mouvements de la main présentant un certain désordre/désalignement qui rend difficile une telle estimation. Dans un premier temps, l’estimation de l’orientation de la centrale inertielle est affinée afin de projeter avec un minimum d’erreur les mesures inertielles dans le plan horizontal. Un filtre d’estimation de l’orientation paramétré en quaternions et basé sur une exploitation opportune des champs magnétiques et de gravité a été développé. Dans un second temps, il s’agit d’estimer la direction de marche. Les méthodes de l’état de l’art proposent une estimation de la direction de marche à partir de la maximisation de l’énergie du signal. Cette approche est sensible aux mouvements de la main. Nous proposons une nouvelle approche basée sur les théories des probabilités et de l’information qui s’inspire de la description biomécanique de la marche. Des validations expérimentales sont conduites pour analyser les performances d’estimation de la direction de marche qui est directement reliée à la qualité de l’estimation du positionnement. / Thanks to new technological developments, it is now possible to get our localization with our own smartphone. However, indoor environments are still relatively lacking in localization based service. MEMS sensors, composed of inertial and magnetic sensors, offer a ubiquitous solution. These sensors can be merged with other technologies to give a reliable solution for the Pedestrian Navigation. In this context the “Pedestrian Dead Reckoning” strategy is attractive. Indeed, this strategy enables to estimate the walking distance with a limited drift. But the walking direction estimation remains critical in the PDR strategy. Hand movements are relatively erratic and cause a dynamic angular misalignment, which is difficult to estimate. Firstly, a new orientation estimation algorithm of the handheld unit is developed to reduce the errors in the horizontal inertial measurements. The filter is parametrized with quaternions and based on opportune invariant phases of the magnetic and gravity fields. Secondly, a novel walking direction estimator is proposed. State of the art methods to estimate the walking direction are based on the signal energy maximization and are sensitive to erratic hand movements. The new approach is based on the theories of probability and information that is built on the biomechanical description of walking. Experimental validations are conducted to analyze the performance of the new direction estimation filter whose quality directly depends on the quality of the position estimates
|
48 |
Measurement and monitoring of moisture content in timber and investigations of moisture gradients using dielectric measurementsJazayeri, Sina January 1999 (has links)
This thesis addresses various issues in connection with the measurement of moisture content in timber. The early parts include long term experimentally based studies which culminated in producing recommendations to existing British Standards for equilibrium moisture content (EMC) of timber in internal environments. Findings consistently showed lower EMCs than existing recommended values; these are believed to be caused by socio-economic factors. Intermediate sections of the thesis continue with tests on electrical methods of moisture content measurement to establish a basis for comparability and the claimed accuracy of currently available moisture meters in the market. To this end, the performance of a wide range of resistance-type moisture meters in worldwide use was critically investigated under laboratory conditions - it was established that even under the strict controlled conditions of the study, large discrepancies are not uncommon (as great as 13% moisture content difference was observed). While some instruments consistently underestimated, others overestimated under identical conditions. Lack of agreed standards for species corrections and temperature correction factors were found to be the main cause of disagreement between the meters. Further discussions include the layout for a proposed standard in which agreed values for species and temperature correction factors would be established. In the latter part of the thesis moisture gradients in timber, the causes and the current methods of assessment are discussed. In particular, the performance of a leading brand capacitance-type moisture meter was systematically investigated both in the absence and in the presence of predetermined moisture gradients. It was established that moisture gradients severely affect the measured moisture content. A computer controlled capacitance measurement system based on resonance detection was developed to initially replicate the behaviour of conventional capacitance-type moisture meters, and to further investigate possible moisture gradient detection protocols. Two electrode designs were used in order to investigate methods by which moisture gradients could be detected. It was shown that a multi-plate electrode can be used to detect moisture gradients in timber to depths of at least 10 mm.
|
49 |
Development and evaluation of QCM sensors for the detection of influenza virus from clinical samplesPeduru Hewa, Thamara Mangalika, s3007291@student.rmit.edu.au January 2008 (has links)
The Quartz crystal microbalance (QCM) is a very sensitive mass-detecting device which is based on changes in to the vibrational frequency of quartz crystals after adsorption of substances to a modified crystal surface. In this study a QCM-based biosensor was developed for the rapid diagnosis of influenza viruses and its suitability and limitations were compared with currently available diagnostic methods on 67 clinical samples (nasal washes) received during the 2005 Australian winter. The type-specific and conserved viral M1 proteins of both A/PR/8/34 and B/Lee/40 viruses were used to prepare polyclonal antisera for the development of an ELISA. The limits of detection of ELISAs for the detection of purified A/PR/8/34 and B/Lee/40 nviruses were 20Ýg/mL nand 14 Ýg/mL using polyclonal antibodies, and 30 Ýg/mL and 20 Ýg/mL for monoclonal antibodies, respectively. The limit for detection of each virus was 104 pfu/mL, irrespective of whether antisera or monoclonal antibodies were used for capture. Non-purified cell culture-grown preparations of either virus could be detected at 103 pfu/mL The QCM utilised the same reagents used in ELISAs. However, a number of parameters were then further optimised to improve the sensitivity of the tests. These included blocking of non-specific binding, examination of the effects of flow-cell compression, the role of pH, flow rate, antibody concentration and the addition of protein A to the crystal surfaces of the biosensor. The lowest virus concentration that could be detected with the QCM was 104 pfu/mL for egg-grown preparations of both A/PR/8/34 and B/Lee/40, which could be detected within 30 min. However, conjugation of 13 nm gold nanoparticles to a second detector antibody resulted in a 10-fold increase in sensitivity and a detection limit of 103 pfu/mL that could be determined within 1 h. The direct detection of the influenza viruses in nasal samples was not possible by QCM because of the significant frequency fluctuation that was probably caused by the viscosity of the samples. Therefore, an additional culture step of 12 h was required, which increased the processing time to 2 days. The QCM/nanoparticle method was shown to be as sensitive as the standard cell culture method, and the QCM method as sensitive as the shell vial method. The QCM and QCM/nanoparticle methods were shown to be 81 and 87% as sensitive and both were 100% as specific as the real-time polymerase chain reaction. However, for use in rapid diagnosis, improvements are required to remove frequency fluctuation resulting from the direct use of nasal samples.
|
50 |
Metal-enhanced electrochemical biosensor & nanoremediationK'Owino, Isaac Odhiambo. January 2006 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Dept. of Chemistry, 2006. / Includes bibliographical references.
|
Page generated in 0.0479 seconds