• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1754
  • 500
  • 282
  • 191
  • 151
  • 145
  • 44
  • 44
  • 44
  • 44
  • 44
  • 44
  • 38
  • 33
  • 23
  • Tagged with
  • 4053
  • 391
  • 390
  • 383
  • 379
  • 349
  • 342
  • 338
  • 234
  • 221
  • 220
  • 211
  • 204
  • 196
  • 195
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Alternatives to distillation: multi-membrane permeation and petrol pre-blending for bio-ethanol recovery

Stacey, Neil Thomas January 2016 (has links)
A thesis submitted for the degree of Doctor of Philosophy to The Department of Chemical and Metallurgical Engineering, Faculty of Engineering, University of the Witwatersrand, Johannesburg, 2016 / Separation of materials is crucial to the operation of the majority of chemical processes, not only for the purification of final products but also for the processing of feed-stocks prior to chemical reaction. The most commonplace method of materials separation is distillation which, unfortunately, is often an energy-intensive process and contributes significantly to mankind’s energy consumption and carbon dioxide emissions. Alternative approaches to separation are therefore a crucial element of the ongoing pursuit for sustainability in chemical industries. There are two principal ways of going about this. The first is to replace distillation units with alternative unit operations that can achieve the same separation with less energy expenditure. The second approach is overall flowsheet revision, fundamentally changing a separation cycle to minimize its energy requirements. The greatest improvements to energy efficiency will be achieved by applying both approaches in tandem. However, each must be developed separately to make that possible. This thesis lays the groundwork for radical revision of major separation operations by showcasing a new overall flowsheet for bioethanol separation that promises tremendous improvements in separation efficiency, reducing the energy usage involved in ethanol purification by as much as 40% in some scenarios. It also develops a novel method for the design of multi-membrane permeation units, showing how area ratio can be manipulated to fundamentally alter separation performance from such units, resulting in superior separation performance to conventional units, achieving higher recoveries than conventional setups. With membranes being an increasingly popular separation method, the potential for superior performance from multi-membrane units promises improvements in separation efficiency.
32

A BIOPARTICLE SEPARATION TECHNIQUE THROUGH MICROCHANNELS USING SEQUENTIAL PRESSURE PULSES

JAIN, ALOK 02 July 2004 (has links)
No description available.
33

Statistical and neural network techniques for independent component analysis and latent variable applications

Scruby, Gavin John January 2000 (has links)
No description available.
34

Synthesis and performance evaluation of Nanocomposite SAPO-34/ceramic membranes for CO₂/N₂ mixture separation

Kgaphola, Kedibone Lawrence January 2017 (has links)
School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa August 2017 / Global warming, resulting from emission of greenhouse gases (GHGs), is the cause of drastic climate changes that threatens the economy and living conditions on the planet. Currently, recovery and mitigation of these greenhouse gases remains a technological and scientific challenge. Various recovery processes for the mitigation of GHGs have been reported including among others carbon capture and storage (CCS). The most mature and applied technology in CCS process involves the absorption of carbon dioxide on amine based solvents. However, studies have shown that this process has several drawbacks that include low stability and high energy required to strip off the absorbed CO2 and regenerate the solvent. This presents an opportunity for the development of new materials for CO2 capture such as zeolite membranes. Previous studies have shown that the separation of CO2 can be achieved with high selectivity at low temperatures using thin-film SAPO-34 membranes (thin layers on supports). This is because CO2 adsorbs strongly on the membranes compared to other gases found in flue gas. In the thin-film membranes supported on ceramic or sintered stainless steel, thermal expansion mismatch may occur at higher operating temperatures resulting in loss of membrane selectivity due to the formation of cracks. A new method is required to overcome the aforementioned problems, thereby enhancing the separation application of the membranes at higher temperatures. The effective separation and capture of CO2 from the coal-fired power plant flue gas is an essential part in the CCS process (Figueroa et al., 2016; Yang et al., 2008). Currently, the capture stage is a huge contributor to the overall cost of CCS (Yang et al., 2008). This is due to the high-energy intensity and inefficient thermal processes applied in the separation and capture in various industrial applications (Yang et al., 2008). This work presents the use of nanocomposite SAPO-34 zeolite membranes synthesized via the pore-plugging hydrothermal method for the separation of CO2 during post-combustion CO2 capture. The SAPO-34 membranes used were supported on asymmetric α-alumina as membrane supports. The membranes were characterized with a combination of dynamic and static physicochemical techniques such as Basic Desorption Quality Test (BDQT), X-ray diffraction (XRD) spectroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The characteristic peaks at 2θ = 21°, 26°, and 32° on the XRD pattern confirmed the presence of SAPO-34 with a rhombohedral crystalline structure. The SEM images showed the formation of the cubic crystalline which were consistent with the reported morphology of SAPO-34. FTIR spectra showed the presence of the essential double-6 membered rings (D6R) and TO4 structural groups in surface chemistry of crystalline materials further confirming the presence SAPO-34. The TGA confirmed that the membranes possessed high thermal stability. To assess the feasibility of the synthesis process, the nanocomposite zeolites were grown within the tubular supports. The SEM images of the cross-section of the membrane confirmed the presence of the zeolites within the pores of the support confirming the fabrication of nanocomposite membranes by the pore-plugging synthesis method. The permeation tests used a dead-end filtration mode to measure the single gas permeance and the ideal selectivity of CO2 and N2 were calculated. The BDQT was essential in the study of the quality of the as-synthesized nanocomposite membranes. The quality of the membranes increased with an increase in the synthesis layers of the membranes. However, with an increase in synthesis layers, the membrane thickness also increases. The membrane thickness affected the gas permeance for CO2 and N2 significantly. The permeance of the N2 gas decreased from 10.73 x10-7 mol.s-1.m2Pa-1 after the first synthesis to 0.31 x10-7 mol.s-1.m2Pa-1 after seven synthesis layers. Alternatively, the more adsorbing gas CO2 decreased from 12.85 x10-7 mol.s-1.m2Pa-1 to 2.44 x10-7 mol.s-1.m2Pa-1. The performance of these zeolite membranes depends significantly on the operating conditions. Hence, we studied extensively the influence of the various operating conditions such as temperature, feed pressure and feed flowrate in this work. Results indicated that the membrane separation performance in this study is largely dependent on the temperature. In addition, the ideal selectivity decreased significantly with an increase in temperature. High temperatures results in less adsorption of the highly adsorbing CO2 gas, the permeance reduces significantly, while the permeance of the less adsorbing N2 increased slightly. The feed flow rate has less effect on the adsorbing gas while the non-absorbing gas increased resulting in a decrease in the ideal selectivity as well. The nanocomposite membranes in this study have a low flux compared to their thin film counterparts. An increase in feed pressure significantly increased the flux significantly as well as the ideal selectivity. Maxwell-Stefan model simulation was done in this study to describe the permeance of pure CO2 single gas permeance as a function of temperature. This model considered explicitly the adsorption-diffusion mechanism, which is the transport phenomenon, involved in the transport of CO2 through the zeolite membrane. The description of the support material was included in the model as well. However, the model was only applied to the CO2 gas permeation well within the experimental data. We then compared the model was with the experimental results and a good correlation was observed. In conclusion, SAPO-34 nanocomposite zeolite membranes were obtained at low temperatures (150 °C) with a short synthesis time (6 h). In addition, the high thermal stability of the as-synthesized SAPO-34 membranes makes them ideal for high temperature CO2 separation such as the intended post-combustion carbon capture. The BDQT revealed that the quality of the membranes was related to the thickness of the membranes. Therefore, better membrane quality was obtained with relatively thicker membranes. The separation performance evaluation was conducted on the membrane with the greatest quality. Our findings demonstrate that the performance of the membranes depends extensively on the operating conditions. / MT2018
35

Single channel separation of vocals from harmonic and percussive instruments

Deif, Hatem January 2017 (has links)
Enhancing the separated singing voices from harmonic (pitched) and percussive musical instruments in songs recorded with a single microphone is the scope of this thesis. Separating singing voice has applications in music information retrieval systems. Various methods have been used to separate singing voice from harmonic and percussive instruments. Most of them use two stages of separation, one for separating harmonic instruments, and the other for separating percussive instruments. One of these Algorithms uses non-negative matrix factorization in each stage to separate harmonic and percussive instruments. Traditionally, in each stage, components' bases or gains are clustered based on discontinuity measures. The first contribution of this thesis was the use of local discontinuity of significant parts of these bases and gains, followed by splitting (rather than classifying) each component's basis or gain. This significantly refined the separated voice and music sources. Median filtering has also been used in two stages to separate singing voice. Typically, horizontal and vertical filters are used in each stage. The second contribution of this thesis was to enhance the separation quality using a combination of six additional diagonal median filters to accommodate singing voice frequency modulations. In addition, filters parameters that are suitable for all songs regardless of their sampling frequencies are sought. The third contribution of this research was the novel use of Hough Transform to detect traces of pitched instruments in the magnitude spectrogram of the separated voice. These traces are then removed completely using median filtering after successfully calculating their frequency bands. The new Hough Transform based approach was applied to a number of separation algorithms as a post processing step and it significantly improved the quality of the separated voice and music in all of them.
36

Low hydrocarbon solubility polymers: plasticization-resistant membranes for carbon dioxide removal from natural gas

Prabhakar, Rajeev Satish 28 August 2008 (has links)
Not available / text
37

Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases

Lin, Haiqing 28 August 2008 (has links)
Not available / text
38

Solvent extraction of calcium and magnesium

Katekaru, James Y., 1934- January 1960 (has links)
No description available.
39

Robust curvelet-domain primary-multiple separation with sparseness constraints

Herrmann, Felix J., Verschuur, Dirk J. January 2005 (has links)
A non-linear primary-multiple separation method using curvelets frames is presented. The advantage of this method is that curvelets arguably provide an optimal sparse representation for both primaries and multiples. As such curvelets frames are ideal candidates to separate primaries from multiples given inaccurate predictions for these two data components. The method derives its robustness regarding the presence of noise; errors in the prediction and missing data from the curvelet frame's ability (i) to represent both signal components with a limited number of multi-scale and directional basis functions; (ii) to separate the components on the basis of differences in location, orientation and scales and (iii) to minimize correlations between the coefficients of the two components. A brief sketch of the theory is provided as well as a number of examples on synthetic and real data.
40

The impact of child adjustment to preschool on maternal separation anxiety

Partamian, Catherine M. January 2008 (has links)
Thesis (Ph.D.)--George Mason University, 2008. / Vita: p. 105. Thesis director: Carol J. Erdwins. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology. Title from PDF t.p. (viewed Aug. 28, 2008). Includes bibliographical references (p. 96-104). Also issued in print.

Page generated in 0.1128 seconds