1 |
Compact Topological SpacesConway, Thomas M. 06 1900 (has links)
The purpose of this paper is to investigate some properties of compact topological spaces and to relate these concepts to the separation properties.
|
2 |
Product and Function SpacesBarrett, Lewis Elder 08 1900 (has links)
In this paper the Cartesian product topology for an arbitrary family of topological spaces and some of its basic properties are defined. The space is investigated to determine which of the separation properties of the component spaces are invariant.
|
3 |
Pokročilé techniky separace a analýzy dat v kapilární elektroforéze / Advanced Separation Techniques and Data Processing in Capillary ElectrophoresisAnsorge, Martin January 2021 (has links)
Techniques of capillary electrophoresis are essential for both the quantitative and qualitative analysis of a large variety of compounds. They find application in many areas of chemistry, from pharmacological industry and food processing, up to highly specialized biotechnological laboratories. Over the last hundred years, their mathematical model has been described with precision. Thus, current research mainly aims for the development of more advanced and more specialized applications. During the greatest boom of affinity capillary electrophoresis within the nineties, many authors would describe similar phenomena under different names. The first part of this work focuses on the consolidation and unification of the problematics and terminology of this method. It also discusses the phenomena which can affect electromigration and separation during electrophoretic processes. We will focus on a specific subset of affinity capillary electrophoresis, partial filling capillary electrophoresis, which, to our knowledge, has not been fully theoretically explored yet, and present a mathematical model allowing the determination of complexation constants and state some limitations of this approach. The second part of this thesis focuses on the development and application of computer softwares, which are meant...
|
4 |
Algumas aplicações de combinatória infinita a espaços de funções contínuas / Some aplications of infinite combinatorics to continuous functions spacesFernández, Juan Francisco Camasca 06 April 2017 (has links)
O principal objetivo deste trabalho é estudar diversas aplicações de combinatória infinita em espaços de funções contínuas, definidas em espaços compactos Hausdorff. Usando combinatória infinita para uma álgebra de Boole, por meio da dualidade de Stone, obtemos um espaço compacto Hausdorff. Com certas propriedades na álgebra de Boole é possível analisar propriedades analíticas no espaço de funções contínuas definidas em tal espaço. Especificamente, analisamos a propriedade de Grothendieck. Também analisamos a relação entre o espaço de funções contínuas e o espaço compacto Hausdorff sobre o qual é definido. Apresentamos um resultado que permite obter diversos resultados conhecidos de uma maneira uniforme (só usando fatos de topologia e teoria de conjuntos), dotando o espaço de funções contínuas de uma ordem peculiar. Finalmente, estudamos um pouco de jogos topológicos mediante diversos exemplos. / The main purpose of this work is to study some infinite combinatorics applications in spaces of continuous functions, defined in Hausdorff compact spaces. Using infinite combinatorics in Boolean algebras, through Stone duality, we obtain a compact Hausdorff space. With certain properties in Boolean algebras it is possible to analyze analytic properties in the space of continuous functions defined in such space. Specifically, we analyze the Grothendieck property. We also analyze the relationship between the space of continuous functions and the compact Hausdorff space on which it is defined. We present a result that allows to obtain several known results in a uniform way (only using facts of topology and set theory), giving the space of continuous functions a peculiar order. Finally, we study some topological games through several examples.
|
5 |
Algumas aplicações de combinatória infinita a espaços de funções contínuas / Some aplications of infinite combinatorics to continuous functions spacesJuan Francisco Camasca Fernández 06 April 2017 (has links)
O principal objetivo deste trabalho é estudar diversas aplicações de combinatória infinita em espaços de funções contínuas, definidas em espaços compactos Hausdorff. Usando combinatória infinita para uma álgebra de Boole, por meio da dualidade de Stone, obtemos um espaço compacto Hausdorff. Com certas propriedades na álgebra de Boole é possível analisar propriedades analíticas no espaço de funções contínuas definidas em tal espaço. Especificamente, analisamos a propriedade de Grothendieck. Também analisamos a relação entre o espaço de funções contínuas e o espaço compacto Hausdorff sobre o qual é definido. Apresentamos um resultado que permite obter diversos resultados conhecidos de uma maneira uniforme (só usando fatos de topologia e teoria de conjuntos), dotando o espaço de funções contínuas de uma ordem peculiar. Finalmente, estudamos um pouco de jogos topológicos mediante diversos exemplos. / The main purpose of this work is to study some infinite combinatorics applications in spaces of continuous functions, defined in Hausdorff compact spaces. Using infinite combinatorics in Boolean algebras, through Stone duality, we obtain a compact Hausdorff space. With certain properties in Boolean algebras it is possible to analyze analytic properties in the space of continuous functions defined in such space. Specifically, we analyze the Grothendieck property. We also analyze the relationship between the space of continuous functions and the compact Hausdorff space on which it is defined. We present a result that allows to obtain several known results in a uniform way (only using facts of topology and set theory), giving the space of continuous functions a peculiar order. Finally, we study some topological games through several examples.
|
Page generated in 0.1483 seconds