• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME SYSTEM WITH SEQUENCE DEPENDENT SETUPS

Henninger, John Thomas 01 January 2009 (has links)
Just-In-Time (JIT) production systems is a popular area for researchers but real-world issues such as sequence dependent setups are often overlooked. This research investigates an approach for determining stability and an approach for mixed product sequencing in production systems with sequence dependent setups and buffer thresholds which signal replenishment of a given buffer. Production systems in this research operate under JIT pull production principles by producing only when demand exists and idle when no demand exists. In the first approach, an iterative method is presented to determine stability for a multi-product production system that operates with replenishment signals and may have sequence dependent setups. In this method, a network of nodes representing machine states and arcs representing the buffer inventory levels is used to find a stable trajectory for the production system via an iterative procedure. The method determines suitable buffer levels for the production system that ensure that a trajectory originating from any point within a buffer region will always map to a point contained on another buffer region for all future mappings. This iterative method for determining the stability of a production system was implemented using an algorithm to calculate the buffer inventory regions for all arcs in a given arc-node network. The algorithm showed favorable results for two and three product systems in which sequence dependent setups may exist. In the second approach, a product sequencing algorithm determines a product sequence for a production system based on system parameters – setup times, buffer levels, usage rates, production rates, etc. The algorithm selects a product by evaluating the goodness of each product that has reached the replenishment threshold at the current time. The algorithm also incorporates a lookahead function that calculates the goodness for some time interval into the future. The lookahead function considers all branches of the tree of potential sequences to prevent the sequence from travelling down a dead-end branch in which the system will be unable to avoid a depleted buffer. The sequencing algorithm allows the user to weight the five terms of the goodness equations (current and lookahead) to control the behavior of the sequence.
2

Bi-criteria group scheduling with sequence-dependent setup time in a flow shop

Lu, Dongchen 21 November 2011 (has links)
Cellular manufacturing, which is also referred to as group technology among researchers, has primarily been used as a means to increase productivity, efficiency and flexibility. Under group technology, similar jobs, which have similar shape, material, and processing operations are assigned to the same group. Moreover, dissimilar machines are assigned to the same cell to meet the processing requirements of jobs in a group or multiple groups. Group scheduling problems have been studied extensively in the past as implementation of group technology became more prevalent in industry. However, most of the work that has been done has focused on single-criterion optimization. A bi-criteria group scheduling problem in a flow shop with sequence-dependent setup time is investigated in this research. Cellular manufacturing and flow shop are two popular scenarios in industry. To mimic real industry practice, dynamic job releases and dynamic machine availabilities are assumed. The goal is to minimize the weighted sum of total weighted completion time and total weighted tardiness, which satisfy the producer and customer goals separately. Normalized weights are assigned to both criteria to describe the trade-off between the two goals. Two different initial solution finding mechanisms are proposed, and a tabu-search based two-level search algorithm is developed to find near optimal solutions for the problem. An example problem is used to demonstrate the applicability of the search algorithm. A mathematical model is developed and implemented to evaluate the quality of the solutions obtained from the heuristics in small problem instances. Further, to uncover the difference in performance of initial solution finding mechanisms and heuristics, a detailed experimental design is performed. The results show that different heuristics have different performance in solving problems generated with different parameters. / Graduation date: 2012
3

Simulation Optimization for the Stochastic Economic Lot Scheduling Problem with Sequence-Dependent Setup Times

Löhndorf, Nils, Riel, Manuel, Minner, Stefan 11 1900 (has links) (PDF)
We consider the stochastic economic lot scheduling problem (SELSP) with lost sales and random demand, where switching between products is subject to sequence-dependent setup times. We propose a solution based on simulation optimization using an iterative two-step procedure which combines global policy search with local search heuristics for the traveling salesman sequencing subproblem. To optimize the production cycle, we compare two criteria: minimizing total setup times and evenly distributing setups to obtain a more regular production cycle. Based on a numerical study, we find that a policy with a balanced production cycle leads to lower cost than other policies with unbalanced cycles. (authors' abstract)
4

Shop Scheduling In The Presence Of Batching, Sequence-dependent Setups And Incompatible Job Families Minimizing Earliness And Tardiness Penalties

Buchanan, Patricia 01 January 2014 (has links)
The motivation of this research investigation stems from a particular job shop production environment at a large international communications and information technology company in which electro-mechanical assemblies (EMAs) are produced. The production environment of the EMAs includes the continuous arrivals of the EMAs (generally called jobs), with distinct due dates, degrees of importance and routing sequences through the production workstations, to the job shop. Jobs are processed in batches at the workstations, and there are incompatible families of jobs, where jobs from different product families cannot be processed together in the same batch. In addition, there are sequence-dependent setups between batches at the workstations. Most importantly, it is imperative that all product deliveries arrive on time to their customers (internal and external) within their respective delivery time windows. Delivery is allowed outside a time window, but at the expense of a penalty. Completing a job and delivering the job before the start of its respective time window results in a penalty, i.e., inventory holding cost. Delivering a job after its respective time window also results in a penalty, i.e., delay cost or emergency shipping cost. This presents a unique scheduling problem where an earlinesstardiness composite objective is considered. This research approaches this scheduling problem by decomposing this complex job shop scheduling environment into bottleneck and non-bottleneck resources, with the primary focus on effectively scheduling the bottleneck resource. Specifically, the problem of scheduling jobs with unique due dates on a single workstation under the conditions of batching, sequence-dependent iii setups, incompatible job families in order to minimize weighted earliness and tardiness is formulated as an integer linear program. This scheduling problem, even in its simplest form, is NP-Hard, where no polynomial-time algorithm exists to solve this problem to optimality, especially as the number of jobs increases. As a result, the computational time to arrive at optimal solutions is not of practical use in industrial settings, where production scheduling decisions need to be made quickly. Therefore, this research explores and proposes new heuristic algorithms to solve this unique scheduling problem. The heuristics use order review and release strategies in combination with priority dispatching rules, which is a popular and more commonly-used class of scheduling algorithms in real-world industrial settings. A computational study is conducted to assess the quality of the solutions generated by the proposed heuristics. The computational results show that, in general, the proposed heuristics produce solutions that are competitive to the optimal solutions, yet in a fraction of the time. The results also show that the proposed heuristics are superior in quality to a set of benchmark algorithms within this same class of heuristics
5

Lot-sizing and scheduling optimization using genetic algorithm

Darwish, Mohammed January 2019 (has links)
Simultaneous lot-sizing and scheduling problem is the problem to decide what products to be produced on which machine and in which order, as well as the quantity of each product. Problems of this type are hard to solve. Therefore, they were studied for years, and a considerable number of papers is published to solve different lotsizing and scheduling problems, specifically real-case problems. This work proposes a Real-Coded Genetic Algorithm (RCGA) with a new chromosome representation to solve a non-identical parallel machine capacitated lot-sizing and scheduling problem with sequence dependent setup times and costs, machine cost and backlogging. Such a problem can be found in real world production line at furniture manufacturer in Sweden. Backlogging is an important concept in this problem, and it is often ignored in the literature. This study implements three different types of crossover; one of them has been chosen based on numerical experiments. Four mutation operators have been combined together to allow the genetic algorithm to scan the search area and maintain genetic diversity. Other steps like initializing of the population and a reinitializing process have been designed carefully to achieve the best performance and to prevent the algorithm from trapped into the local optimum. The proposed algorithm is implemented and coded in MATLAB and tested for a set of standard medium to large-size problems taken from the literature. A variety of problems were solved to measure the impact of different characteristics of problems such as the number of periods, machines, and products on the quality of the solution provided by the proposed RCGA. To evaluate the performance of the proposed algorithm, the average deviation from the lower bound and runtime for the proposed RCGA are compared with three other algorithms from the literature. The results show that, in addition to its high computational speed, the proposed RCGA outperforms the other algorithms for non-identical parallel machine problems, while it is outperformed by the other algorithms for problems with the more identical parallel machine. The results show that the different characteristics of problem instances, like increasing setup cost, and size of the problem influence the quality of the solutions provided by the proposed RCGA negatively.

Page generated in 0.1098 seconds