• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bázové posloupnosti v Banachových prostorech / Basic sequences in Banach spaces

Zindulka, Mikuláš January 2021 (has links)
An ordering on bases in Banach spaces is defined as a natural generalization of the notion of equivalence. Its theory is developed with emphasis on its behavior with respect to shrinking and boundedly-complete bases. We prove that a bounded operator mapping a shrinking basis to a boundedly-complete one is weakly compact. A well-known result concerning the factorization of a weakly compact operator through a reflexive space is then reinterpreted in terms of the ordering. Next, we introduce a class of Banach spaces whose norm is constructed from a given two-dimensional norm N. We prove that any such space XN is isomorphic to an Orlicz sequence space. A key step in obtaining this correspondence is to describe the unit circle in the norm N with a convex function ϕ. The canonical unit vectors form a basis of a subspace YN of XN . We characterize the equivalence of these bases and the situation when the basis is boundedly-complete. The criteria are formulated in terms of the norm N and the function ϕ. 1
12

Operadores lineares Cohen fortemente somantes

Leite, Fábio da Silva de Siqueira 21 February 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-22T16:03:10Z No. of bitstreams: 1 arquivototal.pdf: 1039820 bytes, checksum: 2e99f469c22f0b9c57e0059499fc3b27 (MD5) / Made available in DSpace on 2017-08-22T16:03:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1039820 bytes, checksum: 2e99f469c22f0b9c57e0059499fc3b27 (MD5) Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The goal of our work is to study the class of the Cohen strongly summing operators. Initially, we present basic results from Functional Analysis that are necessary for the development of the text and then we deal with sequence spaces which will be used to de ne and study the classes of operators involved in this work, as necessarily the class of the absolutely summing operators. We also study the sequence space of the Cohen- Khalil strongly (q; p)-summable sequences and the sequence space of the Cohen strongly p-summable sequences, as a particular instance of the former. From this, we de ne the class of the Cohen strongly p-summing operators and the class of the Cohen-Khalil strongly (s; r; p)-summing operators which, under certain conditions, are equivalent. We conclude with a study, from the viewpoint of the operator ideal theory, using the abstract environment created by G. Botelho and J. R. Campos, in order to show that p and Dp are Banach ideals and the relations dual p = Dp and Ddual p = p are valid, where p and p are conjugate indexes. / objetivo de nosso trabalho e estudar a classe dos operadores Cohen fortemente p- somantes. Inicialmente, apresentamos resultados b asicos de An alise Funcional necess arios ao desenvolvimento do texto e, em seguida, tratamos dos espa cos de sequ^encias que ser~ao usados na de ni c~ao e estudo das classes de operadores envolvidas no trabalho, como necessariamente a classe dos operadores absolutamente somantes. Apresentamos tamb em o espa co das sequ^encias Cohen-Khalil fortemente (q; p)-som aveis e o espa co das sequ^encias Cohen fortemente p-som aveis, como caso particular do primeiro. A partir disto, de - nimos a classe dos operadores Cohen fortemente p-somantes e a classe dos operadores Cohen-Khalil fortemente (s; r; p)-somantes que, sob certas condi c~oes, s~ao equivalentes. Conclu mos com um estudo, sob o ponto de vista da teoria dos ideais de operadores, usando o ambiente abstrato criado por G. Botelho e J. R. Campos, para mostrar que p e Dp s~ao ideais de Banach e valem as rela c~oes dual p = Dp e Ddual p = p, onde p e p s~ao ndices conjugados.

Page generated in 0.0396 seconds