• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 66
  • 65
  • 13
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 632
  • 493
  • 97
  • 94
  • 87
  • 77
  • 62
  • 57
  • 52
  • 51
  • 48
  • 46
  • 45
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Arsenate uptake, sequestration and reduction by a freshwater cyanobacterium: a potenial biologic control of arsenic in South Texas

Markley, Christopher Thomas 29 August 2005 (has links)
The toxicity and adverse health effects of arsenic are widely known. It is generally accepted that sorption/desorption reactions with oxy-hydroxide minerals (iron, manganese) control the fate and transport of inorganic arsenic in surface waters through adsorption and precipitation-dissolution processes. In terrestrial environments with limited reactive iron, recent data suggest organoarsenicals are potentially important components of the biogeochemical cycling of arsenic in near-surface environments. Elevated arsenic levels are common in South Texas from geogenic processes (weathering of As-containing rock units) and anthropogenic sources (a byproduct from decades of uranium mining). Sediments collected from South Texas show low reactive iron concentrations, undetectable in many areas, making oxy-hydroxide controls on arsenic unlikely. Studies have shown that eukaryotic algae isolated from arsenic-contaminated waters have increased tolerance to arsenate toxicity and the ability to uptake and biotransform arsenate. In this experiment, net uptake of arsenic over time by a freshwater cyanobacterium never previously exposed to arsenate was quantified as a function of increasing As concentrations and increasing N:P ratios. Toxic effects were not evident when comparing cyanobacterial growth, though extractions indicate accumulation of intracellular arsenic by the cyanobacterium. Increasing N:P ratios has minimal effect on net arsenate uptake over an 18 day period. However, cyanobacteria were shown to reduce arsenate at rates faster than the system can re-oxidize the arsenic suggesting gross arsenate uptake may be much higher. Widespread arsenate reduction by cyanobacterial blooms would increase arsenic mobility and potential toxicity and may be useful as a biomarker of arsenic exposure in oxic surface water environments.
12

Aquifer Management for CO2 Sequestration

Anchliya, Abhishek 2009 December 1900 (has links)
Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers is estimated to be as high as 1,000 gigatonnes of CO2.(IPCC). Published reports on the potential for sequestration fail to address the necessity of storing CO2 in a closed system. This work addresses issues related to sequestration of CO2 in closed aquifers and the risk associated with aquifer pressurization. Through analytical modeling we show that the required volume for storage and the number of injection wells required are more than what has been envisioned, which renders geologic sequestration of CO2 a profoundly nonfeasible option for the management of CO2 emissions unless brine is produced to create voidage and pressure relief. The results from our analytical model match well with a numerical reservoir simulator including the multiphase physics of CO2 sequestration. Rising aquifer pressurization threatens the seal integrity and poses a risk of CO2 leakage. Hence, monitoring the long-term integrity of CO2 storage reservoirs will be a critical aspect for making geologic sequestration a safe, effective and acceptable method for greenhouse gas control. Verification of long-term CO2 residence in receptor formations and quantification of possible CO2 leaks are required for developing a risk assessment framework. Important aspects of pressure falloff tests for CO2 storage reservoirs are discussed with a focus on reservoir pressure monitoring and leakage detection. The importance of taking regular pressure falloffs for a commercial sequestration project and how this can help in diagnosing an aquifer leak will be discussed. The primary driver for leakage in bulk phase injection is the buoyancy of CO2 under typical deep reservoir conditions. Free-phase CO2 below the top seal is prone to leak if a breach happens in the top seal. Consequently, another objective of this research is to propose a way to engineer the CO2 injection system in order to accelerate CO2 dissolution and trapping. The engineered system eliminates the buoyancy-driven accumulation of free gas and avoids aquifer pressurization by producing brine out of the system. Simulations for 30 years of CO2 injection followed by 1,000 years of natural gradient show how CO2 can be securely and safely stored in a relatively smaller closed aquifer volume and with a greater storage potential. The engineered system increases CO2 dissolution and capillary trapping over what occurs under the bulk phase injection of CO2. This thesis revolves around identification, monitoring and mitigation of the risks associated with geological CO2 sequestration.
13

System Design and Optimization of CO2 Storage in Deep Saline Aquifers

Shamshiri, Hossein 2010 December 1900 (has links)
Optimization of waterflooding sweep efficiency has been widely applied in reservoir engineering to improve hydrocarbon recovery while delaying water breakthrough and minimizing the bypassed oil in reservoirs. We develop a new framework to optimize flooding sweep efficiency in geologic formations with heterogeneous properties and demonstrate its application to waterflooding and geological CO2 sequestration problems. The new method focuses on equalizing and delaying (under constant total injected volume) the breakthrough time of the injected fluid at production wells. For application to CO2 sequestration where producers may not be present, we introduce the concept of pseudo production wells that have insignificant production rates (with negligible effect on the overall flow regime) for quantification of hypothetical breakthrough curves that can be used for optimization purpose. We apply the new method to waterflooding and CO2 sequestration optimization using two heterogeneous reservoir models. We show that in water flooding experiments, the proposed method improves the sweep efficiency by delaying the field breakthrough and equalizing breakthrough times in all production wells. In this case, the optimization results in increased oil recovery and decreased water production. We apply a modified version of the proposed algorithm to geologic CO2 sequestration problems to maximize the storage capacity of aquifers by enhancing the residual and dissolution trapping. The results from applying the proposed approach to optimization of geologic CO2 storage problems illustrate the effectiveness of the algorithm in improving residual and solubility trapping by increasing the contact between available fresh brine and the injected CO2 plume through a more uniform distribution of CO2 in the aquifer.
14

Arsenate uptake, sequestration and reduction by a freshwater cyanobacterium: a potenial biologic control of arsenic in South Texas

Markley, Christopher Thomas 29 August 2005 (has links)
The toxicity and adverse health effects of arsenic are widely known. It is generally accepted that sorption/desorption reactions with oxy-hydroxide minerals (iron, manganese) control the fate and transport of inorganic arsenic in surface waters through adsorption and precipitation-dissolution processes. In terrestrial environments with limited reactive iron, recent data suggest organoarsenicals are potentially important components of the biogeochemical cycling of arsenic in near-surface environments. Elevated arsenic levels are common in South Texas from geogenic processes (weathering of As-containing rock units) and anthropogenic sources (a byproduct from decades of uranium mining). Sediments collected from South Texas show low reactive iron concentrations, undetectable in many areas, making oxy-hydroxide controls on arsenic unlikely. Studies have shown that eukaryotic algae isolated from arsenic-contaminated waters have increased tolerance to arsenate toxicity and the ability to uptake and biotransform arsenate. In this experiment, net uptake of arsenic over time by a freshwater cyanobacterium never previously exposed to arsenate was quantified as a function of increasing As concentrations and increasing N:P ratios. Toxic effects were not evident when comparing cyanobacterial growth, though extractions indicate accumulation of intracellular arsenic by the cyanobacterium. Increasing N:P ratios has minimal effect on net arsenate uptake over an 18 day period. However, cyanobacteria were shown to reduce arsenate at rates faster than the system can re-oxidize the arsenic suggesting gross arsenate uptake may be much higher. Widespread arsenate reduction by cyanobacterial blooms would increase arsenic mobility and potential toxicity and may be useful as a biomarker of arsenic exposure in oxic surface water environments.
15

Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field

Gaviria Garcia, Ricardo 12 April 2006 (has links)
Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon dioxide a year under fully operational conditions in 2006, the multiple-partner Teapot Dome project could be one of the world's largest CO2 storage sites. CO2 injection has been used for decades to improve oil recovery from depleted hydrocarbon reservoirs. In the CO2 sequestration technique, the aim is to "co-optimize" CO2 storage and oil recovery. In order to achieve the goal of CO2 sequestration, this study uses reservoir simulation to predict the amount of CO2 that can be stored in the Tensleep Formation and the amount of oil that can be produced as a side benefit of CO2 injection. This research discusses the effects of using different reservoir fluid models from EOS regression and fracture permeability in dual porosity models on enhanced oil recovery and CO2 storage in the Tensleep Formation. Oil and gas production behavior obtained from the fluid models were completely different. Fully compositional and pseudo-miscible black oil fluid models were tested in a quarter of a five spot pattern. Compositional fluid model is more convenient for enhanced oil recovery evaluation. Detailed reservoir characterization was performed to represent the complex characteristics of the reservoir. A 3D black oil reservoir simulation model was used to evaluate the effects of fractures in reservoir fluids production. Single porosity simulation model results were compared with those from the dual porosity model. Based on the results obtained from each simulation model, it has been concluded that the pseudo-miscible model can not be used to represent the CO2 injection process in Teapot Dome. Dual porosity models with variable fracture permeability provided a better reproduction of oil and water rates in the highly fractured Tensleep Formation.
16

Geologic drivers affecting buoyant plume migration patterns in small-scale heterogeneous media : characterizing capillary channels of sequestered CO₂

Ravi Ganesh, Priya 24 April 2013 (has links)
CO₂ sequestration aims for the most efficient utilization of reservoir pore volume and for maximizing security of storage. For typical field conditions and injection rates, buoyancy and capillary forces grow dominant over viscous forces within hundreds of meters of the injection wells as the pressure gradient from injection becomes less influential on flow processes. Flow regimes ranging from compact flow to capillary channel flow or secondary accumulation beneath a seal are possible through time as the CO₂ plume travels through the storage reservoir. Here we model the range of possible migration behavior in the capillary channel regime in small-scale domains whose heterogeneity has been resolved at depositional (sub-millimeter) scale. Two types of model domains have been studied in this work: domains with depositional fabric from real, naturally-occurring geologic samples and geostatistically generated synthetic model fabrics. The real domains come from quasi-2D physical geologic samples (peel # 1: ~1 m × 0.5 m sample and peel # 2: ~0.4 m × 0.6 m sample) that are vertically oriented relief peels of fluvial sediment extracted from the Brazos River, Texas. Peel # 1 is oriented perpendicular to dominant depositional flow while peel # 2 is a flow-parallel specimen. The various depositional fabrics represent definite correlation lengths of threshold pressures in the horizontal and vertical directions which can be extracted. High-resolution (~2 million element model) laser scanning of the samples provided detailed topography which is the result of nearly linear corresponding changes in measured grain size (normal distribution) and sorting. We model the basic physics of buoyant migration in heterogeneous domain using commercial software which applies the principle of invasion percolation (IP). The criterion for governing drainage at the pore scale is that the capillary pressure of the fluid needs to be greater than or equal to the threshold pressure of the pore throat it is trying to enter for the interface to advance into the pore. Here we employ the extension of this concept to flows at larger scales, which replaces the pore throat with a volume of rock with a characteristic value of capillary entry pressure. The fluid capillary pressure is proportional to the height of continuous column of the buoyant phase. The effects of (i) threshold pressure range, i.e. difference between the maximum and minimum threshold pressures in the domain; and (ii) the density difference between CO₂ and connate water on capillary channels of CO₂ were studied on the various sedimentologic fabrics. As the rock and fluid properties varied for different model domains, ₂ migration patterns varied between predominantly fingering and predominantly back-filling structures. Sufficiently heterogeneous media (threshold pressures varying by a factor of 10 or more) and media with depositional fabrics having high ratios of horizontal and vertical correlation lengths of capillary entry pressures in the domain yield back-filling pattern, resulting in a significantly large storage capacity. Invasion percolation simulation models give qualitatively similar CO₂ migration patterns compared to full-physics simulators in small-scale but high resolution domains which are sufficiently heterogeneous. On the other hand, we find the invasion percolation simulations predicting disperse capillary fingering pattern in relatively homogeneous media (threshold pressures varying by less than a factor of 10) while the full-physics simulations reveal a very compact CO₂ front in the same media. This stark difference needs to be investigated to understand the governing flow physics in these domains. Fingering flow pattern in the capillary channel regime would clearly result in the estimated storage capacity being much less than the nominal value (the pore volume of the rock) as the rock-fluid contact is minimal. The importance of this work lies in the verification that a relatively simple model (invasion percolation), which runs in a very small fraction of the time required by full-physics simulators, can be used to study buoyant migration in rocks at the micro-scale. Understanding migration behavior at the small-scale can help us approach the problem of upscaling better and hence define the complex plume dynamics at the reservoir scale more realistically. Knowledge of the correlation structure of the sedimentologic fabric (ratio of correlation lengths of threshold pressures in horizontal and vertical directions) and the threshold pressure distribution (permeability distribution) for any given reservoir rock could help evaluate amount of CO₂ that can be stored per unit volume of rock (storage potential) for a reservoir in the migration phase of sequestration. The possibility of predictive ability for expected capillary channel flow patterns kindles the prospect of enabling an engineered storage strategy that drives the behavior toward the desired flow patterns in the subsurface. / text
17

The interaction of chemical kinetics and fluid flow in the geological storage of carbon dioxide

Andres, Jeanne Therese Hilario January 2013 (has links)
No description available.
18

Seismic imaging of sequestered carbon dioxide

Boait, Frances Cicely January 2012 (has links)
No description available.
19

Carbon dioxide and water speciation in hydrated cements, a focus on sustainability

Liu, Lu. January 2009 (has links) (PDF)
Thesis (M.S. in environmental engineering)--Washington State University, May 2009. / Title from PDF title page (viewed on May 14, 2009). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 71-74).
20

Measurements of plant stress in response to CO2 using a three-CCD imager

Rouse, Joshua Hatley. January 2008 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2008. / Typescript. Chairperson, Graduate Committee: Joseph A. Shaw. Includes bibliographical references (leaves 130-133).

Page generated in 0.1292 seconds