• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 66
  • 65
  • 13
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 633
  • 494
  • 97
  • 95
  • 87
  • 78
  • 62
  • 57
  • 52
  • 51
  • 48
  • 46
  • 45
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Carbon dioxide sequestration options for British Columbia and mineral carbonation potential of the Tulameen ultramafic complex

Voormeij, Danae Aline. 10 April 2008 (has links)
In an effort to lower atmospheric carbon dioxide (C02) levels, a number of sequestration methods, including geological storage, ocean storage and mineral carbonation of CO2 have been proposed for British Columbia. The selection of a suitable sink depends largely on the geology available for a given region. A methodology for assessment of suitable raw material for the mineral carbonation process has been proposed. The Tulameen ultramafic complex is selected as a promising site for providing the raw feed for mineral C02 sequestration and representative dunites have been collected and examined. Carbonation tests of these dunites took place at the Albany Research Center in Oregon and C02 analyses in reaction products (up to 29.4 wt%) suggest 48-56% conversion to magnesite and silica for the dunites, and 18% conversion for a serpentinized dunite. Based on these results, one tonne of Tulameen dunite could potentially sequester up to 0.4 tomes of C02.
52

Assessing the soil carbon sequestration value of a promising energy crop now and into the future

Robertson, Andrew D. January 2015 (has links)
Bioenergy crops have attracted increasing interest over the last two decades as their potential to 1) improve national energy security, 2) substitute finite fuels with renewable alternatives, 3) reduce carbon (C) intensity of energy generation, and 4) remove CO2 from the atmosphere and sequester it in soils. In light of climate change predominantly caused by rising atmospheric greenhouse gas concentrations, the potential importance and value of bioenergy cannot be underestimated. This research used data from a single site in Lincolnshire, UK, in combination with new experimental techniques to examine the C dynamics associated with Miscantus x giganteus. The net C budgets were examined using long term eddy-covariance data alongside measurements of C stocks within the soil and litter layer. Results indicated that using a cradle-to-grave lifecycle analysis, and based on the productivity of this site, Miscanthus as an energy feedstock was marginally better than coal but more C intensive than natural gas. Further, soil C stocks were not seen to change significantly over the first 7 years of cropping. Consequently, a combination of soil fractionation and in combination with natural abundance stable C isotope techniques allowed rates of soil C gain or loss to be estimated over time. Soil C was observed to accumulate at fast rates in stable fractions, those that relate to model pools with turnover times well beyond the lifetime of a Miscanthus plantation – a result not predicted by model simulations performed with the systems models ECOSSE and DayCent. A review of six models parameterised for Miscanthus showed a number of factors that contribute to model uncertainty. The results from this thesis are a crucial first step to helping to define model parameters and improve model performance, and therefore to accurately predict the impacts of Miscanthus on C sequestration in a given location for given environmental conditions.
53

Mineral Carbonation in Mantle Peridotite of the Samail Ophiolite, Oman: Implications for permanent geological carbon dioxide capture and storage

Paukert, Amelia Nell January 2014 (has links)
Carbon dioxide capture and storage will be necessary to mitigate the effects of global climate change. Mineral carbonation - converting carbon dioxide gas to carbonate minerals - is a permanent and environmentally benign mechanism for storing carbon dioxide. The peridotite section of the Samail Ophiolite is host to exceptionally well-developed, naturally occurring mineral carbonation and serves as a natural analog for an engineered carbon dioxide storage project. This work characterizes the geochemistry and hydrogeology of peridotite aquifers in the Samail Ophiolite. Water samples were collected from hyperalkaline springs, surface waters, and boreholes in peridotite, and recent mineral precipitates were collected near hyperalkaline springs. Samples were analyzed for chemical composition. Geochemical data were used to delineate water-rock-CO₂ reactions in the subsurface and constrain a reaction path model for the system. This model indicates that mineral carbonation in the natural system is limited by the amount of dissolved carbon dioxide in water that infiltrates deep into the aquifer. The amount of carbon dioxide stored in the system could potentially be enhanced by carbon dioxide injection into the aquifer. Reaction path modeling suggests that injection of water at saturation with carbon dioxide at 100 bars pCO₂ and 90⁰C could increase the carbonation rate by a factor of up to 16,000 and bring carbonation efficiency to almost 100%. Dissolved gas samples from boreholes were collected at in situ conditions and analyzed for chemical composition. Boreholes with pH > 10 contain millimolar levels of dissolved hydrogen and/or methane, indicating these boreholes are located near areas of active low temperature serpentinization. Serpentinization rates were calculated using groundwater flow estimates and dissolved gas concentrations, and range from 3x10⁻⁸ to 2x10⁻⁶ volume fraction peridotite serpentinized per year. Additionally, laboratory incubation experiments show dissolved hydrogen can be stored in sealed copper tubes for at least three months with neither diffusive loss nor production of hydrogen from oxidation of the copper. These experiments demonstrate that copper tubes can be practical containers for collecting and storing dissolved hydrogen in freshwater. Groundwater ages in the peridotite section of the Samail Ophiolite are investigated through analysis of tritium, dissolved noble gases, and stable isotopes. Tritium-³Helium dating was used to estimate the age of modern groundwaters (< 60 years old), and helium accumulation was used as relative age indicator for pre-bomb groundwaters (> 60 years old). Waters with pH < 9.3 have ages from 0-40 years, while waters with pH > 9.3 are all more than 60 years in age. Helium accumulation indicates pH < 10 waters contain only atmospheric and tritiogenic helium, while pH > 10 waters have accumulated 30-65% of their helium from radiogenic production or mantle helium. pH > 10 waters are thus significantly older than pH < 10 waters. Noble gas temperatures are generally around 32⁰C, close to the current mean annual ground temperature. One hyperalkaline borehole has noble gas temperatures 7⁰C cooler than the modern ground temperature, indicating the water at that site may have recharged during a glacial period. Stable isotope data (Δ¹⁸O and Δ²H) for waters with pH < 11 plot between the northern and southern local meteoric water lines, in the typical range for modern groundwater. Hyperalkaline boreholes and springs are enriched in Δ¹⁸O, which suggests they recharged when the southern vapor source dominated, perhaps during glacial periods. Lastly, the potential for in situ mineral carbonation in peridotite is investigated through reactive transport modeling of dissolved CO₂ injection into a peridotite aquifer. Injection was simulated at two depths, 1.25 km and 2.5 km, with reservoir conditions loosely based on the peridotite section of the Samail Ophiolite. The dependence of carbonation extent (mass of carbon dioxide sequestered as carbonate minerals per unit volume) on different factors - such as permeability, reactive surface area, and temperature - was explored. Carbonation extent is strongly controlled by reactive surface area (RSA), with geometric RSA models producing 10 to 770 times more carbonation than conservative RSA models with the same initial permeabilities and temperatures. The ratio of carbon dioxide supply to RSA is also a key factor. The ideal relationship between CO₂ supply and RSA appears to be from 5x10⁻⁴ to 0.2 kg CO₂ /day per m²/m³ RSA. Temperature has also has an impact on carbonation rate: for the same initial permeability, carbonation is 7-35% faster at 90⁰C than at 60⁰C. Simulations of a 50-year carbon dioxide injection show that fracture porosity and permeability do not become overly clogged and carbonation continues at a more or less constant rate. We estimate that one dissolved CO₂ injection well in peridotite could store 1.4 Mtons CO₂ in 30 years with a storage cost of $6/ton. This suggests that an engineered carbon dioxide storage project in peridotite could be both feasible and economical. In situ mineral carbonation in peridotite should continue to be investigated as a safe and permanent mechanism for carbon dioxide storage.
54

Novel Liquid-Like Nanoscale Hybrid Materials with Tunable Chemical and Physical Properties as Dual-Purpose Reactive Media for Combined Carbon Capture and Conversion

Gao, Ming January 2018 (has links)
In order to address the global challenges of climate change caused by the increasing concentration of carbon dioxide (CO2), Carbon Capture, Utilization and Storage (CCUS) has been proposed as a promising strategy in carbon management. In parallel with the target of zero emission in fossil-fired power plants, negative emission has also drawn a great deal of attention in other chemical sectors, including cement making and steel production industries. Thanks to the recent reduction in the cost of renewable energy sources, such as wind and solar, a paradigm shifting concept has emerged to directly convert the captured carbon into chemicals and fuels. In this way, decarbonization in various chemical sectors can be achieved with a reduced carbon footprint. A variety of carbon dioxide conversion pathways have been investigated, including thermochemical, biological, photochemical, electrochemical and inorganic carbonation methods. Electrochemical conversion of carbon dioxide has been thoroughly investigated with great progress in electrocatalysts and reaction mechanisms. However, fewer studies have been taken to tackle the constraint of the low solubility of CO2 in conventional aqueous electrolytes. In an effort to improve the solubility of CO2, various novel electrolytes have been designed with a higher uptake of CO2 and a compatibility with electrochemical conversion, including Nanoparticle Organic Hybrid Materials (NOHMs)-based fluids. NOHMs are a unique liquid-like nanoscale hybrid material, comprising of polymers grafted onto nanoparticles (e.g., silica). NOHMs have demonstrated an excellent thermal stability and a high chemical tunability. Two types of NOHMs with ionic bonding (I) between the polymers and nanoparticles were selected in this study: NOHM-I-PEI incorporating polyethylenimine polymer (PEI) and NOHM-I-HPE consisting of polyetheramine polymer (HPE), illustrative of two modes of carbon capture (e.g., chemisorption and physisorption). The NOHMs-based fluids were synthesized with different secondary fluids and salt to tune the viscosity and conductivity. As the first liquid hybrid solvent system for combined carbon capture and conversion, the physical, chemical and electrochemical properties of NOHMs-based fluids were systematically investigated. It was found that NOHMs-based aqueous fluids have exhibited a lower specific heat capacity than that of the 30 wt.% monoethanolamine (MEA) solvents. In addition, upon CO2 loading, the increase in specific heat capacity and the reduction of the viscosity of the NOHM-I-PEI based aqueous fluids can be attributed to the formation of intra-molecular hydrogen bonds. The different chemistries of the two NOHMs can be reflected by the viscosity-based mixing behavior. The smaller critical concentration and the higher intrinsic viscosity of NOHM-I-HPE based aqueous fluids implied a more significant contribution of viscosity to the system by the addition of NOHM-I-HPE. The viscosity of NOHM-I-HPE (30 wt.%) in water was measured to be 395 cP, an order of magnitude higher than that of NOHM-I-PEI (30 wt.%) in water, which was determined to be 22.6 cP. It was also discovered that the addition of N-methyl-2-pyrrolidone (NMP) has resulted in a dramatic increase of the viscosity of NOHM-I-PEI based aqueous fluids, hypothesized to be due to a possible formation of a complex between NMP and NOHM-I-PEI. On the other hand, the presence of 0.1 M potassium bicarbonate (KHCO3) salt greatly reduced the viscosity of NOHM-I-HPE based aqueous fluids. The electrochemical properties of NOHMs-based fluids were also characterized and an excellent electrochemical stability has been demonstrated. The conductivities of NOHMs-based fluids witnessed an unexpected enhancement from the corresponding untethered polymer-based solutions. At 50 wt.% loading, the conductivity was 15 mS/cm for NOHM-I-PEI based aqueous fluids doped by 1 M bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI), while it was 0.91 mS/cm for PEI based aqueous solutions. Even after the viscosities of the two solutions were converted to the same value, there was still a large gap between the conductivities of the NOHMs-based fluids and polymer-based fluids. The relative tortuosity of ion transport in NOHMs-based fluids compared to untethered polymer-based solutions was less than 1. This result was indicative of a shorter pathway of ion transport in NOHMs-based fluids than in polymer-based fluids. Thus, it is suggested that in addition to a viscosity effect, unique multi-scale structures were also formed, enabling an enhanced ion transport in the NOHMs-based fluids. With this hypothesis, ultra-small-angle X-ray scattering (USAXS) technique was utilized to construct the structures of NOHMs morphology in secondary fluids, from agglomerates at large scale to aggregates at mid-scale, and to the interparticle distance at small scale. The sizes of the aggregates and the interparticle distance were highly tunable by varying the concentrations of NOHMs, and the types of NOHMs and secondary fluids. For example, the aggregate size was (32.30 ± 0.3) nm and (153.9 ± 1.5) nm for 50 wt.% loading of NOHM-I-PEI and NOHM-I-HPE in mPEG, respectively. This hierarchical structure was hypothesized to give ions unique channels and pathways to migrate, resulting in the surprising conductivity enhancement. Cryogenic electron microscopy (CryoEM) was also employed to image such multi-scale fractal structures. The diffusion behavior under this hierarchical structure was studied subsequently. To our surprise, in certain NOHMs-based fluids, such as 10 wt.% NOHM-I-HPE in water at 25℃, the diffusion coefficient of water was 3.43×(10)^(-9) m2/s, higher than that of deionized water, 2.99×(10)^(-9) m2/s. This is evident of the channels created by NOHMs in the secondary fluids to allow faster local diffusion of water and ions. Meanwhile, the diffusion coefficient of NOHM-I-HPE was higher with the presence of 0.1 M KHCO3 salt compared to the salt-free case in water. Though counter-intuitive, this was because salt would interact with the ionic bonding sites of NOHMs, facilitating the dynamic hopping of polymers on the nanoparticle surface, and thus improving the fluidity of the NOHM-I-HPE based aqueous fluids. This investigation of multi-scale structures and diffusion behavior of NOHMs-based fluids was insightful in understanding how the ions move in the system, and in explaining the enhanced conductivity of NOHMs-based fluids compared to the corresponding untethered polymer-based solutions. It is believed that ions move in two regions of the NOHMs-based fluids, the NOHMs-rich region and secondary fluids-rich region, in the mechanisms of translational movement, and coupled and decoupled ion migration with structural relaxation of NOHMs and secondary fluids. With the understanding of the fundamental properties and the construction of hierarchical structures, the carbon capture performance was evaluated for NOHMs-based fluids. The carbon capture behavior can be tuned by the concentration of NOHMs, and the presence of salt and physical solvents. The carbon capture kinetics was determined by both the amount of the capture material and the viscosity of the fluids. It was determined that 30 wt.% NOHM-I-PEI based aqueous fluids exhibited an optimal balance between capture capacity and sorption kinetics. As the concentration of NOHMs further increased, the elevated viscosity of the system limited the mass transfer of carbon capture. It was also found that salt induced a minimal impact on carbon capture in the initial 100 min for 5 wt.% NOHMs loading, but would negatively impact the capture capacity and kinetics at higher NOHMs loadings. Meanwhile, the addition of physical solvent (NMP) reduced carbon capture capacity and kinetics. Various existing forms of CO2 have been identified in NOHMs-based fluids, including carbamate, bicarbonate, and physisorbed CO2. Carbamate came from the reaction between CO2 and the amine functional groups on NOHM-I-PEI. Physisorbed CO2 was identified as the electroactive species for electrochemical conversion of CO2. In the combined carbon capture and conversion experiments using 5 wt.% NOHM-I-HPE based aqueous electrolyte, carbon monoxide (CO) production was enhanced on polycrystalline silver by 60%, and selectivity was changed on a pyridinic-N doped carbon-based electrode, in comparison with conventional 0.1 M KHCO3 electrolyte. The roles of NOHMs in carbon capture and conversion were also explored. The addition of NOHMs was able to improve the solubility of CO2 with a tunable pH change. It is hypothesized that NOHMs can complex with the electrochemical reaction species,CO2 (CO2^-), and this complex formation can be tunable by the concentration and types of NOHMs. In the end, an alternative approach of utilizing NOHMs-based fluids has also been proposed through encapsulation. The encapsulation of NOHMs-based fluids has enabled a higher specific surface area for CO2 uptake, and an enhancement in capture kinetics has been observed compared to the non-encapsulated NOHMs-based fluids. In summary, a novel nanoscale hybrid solvent system has been developed for combined carbon capture and conversion. The insight into the chemistry of this hybrid solvent system is not beneficial to the advancement in carbon capture and conversion, but it is also enlightening for the interdisciplinary development of various areas involving nanoscale hybrid materials.
55

Geological modelling for carbon storage opportunities in the Orange Basin South Africa

Holtman, Jade Aiden January 2019 (has links)
>Magister Scientiae - MSc / This study investigates the viability of the sedimentary deposits in the Northern Orange basin for carbon storage and sequestration. A combination of geological modelling, petrographic and geochemical techniques are used to investigate this scenario after an initial seismic-well tie had been performed to match the formation tops in Well AF-1 with the 3D seismic volume acquired in this basin in 2009. Core description of well AF-1 assisted in identifying different facies and samples taken at specific depths for petrographic and geochemical analyses, while different geological formations were mapped from the calibrated positions of seismic-well tie throughout the seismic volume. The well data and geophysical logs were utilized to generate petrophysical properties and used to calibrate observations made from seismic interpretations. The facies log used in this study was generated using the Python’s script on Petrel 2014 Gamma Ray, while the density log was used to generate the porosity log. The generated facies and porosity logs were upscaled and used to populate a 3D grid using faults and surfaces identified in the seismic volume. The sedimentological properties of the subsurface were identified utilizing petrographic descriptions including measurements of sorting, colour and grain sizes. While the mineralogical properties of the record was verified through XRD analyses and thin section. The facies and porosity modelling revealed the dominance of siltstones and sandstones as the main sedimentary facies throughout the sequence. Sandstones are extensive and prominent within the Cenozoic and Mastrichtian, while the unit dated to the Barremian is identified as having the best potential for CO2 storage based on the overlaying capping unit. Quartz, Plagioclase feldspar (Albite), Biotite and Kaolinite are the major minerals identified in all four samples. Each of these minerals has an implication for which may influence the long term storage of CO2 with the potential to form as they may form part of the inra-porous post-depositional cementation and hence change the porosity and permeability properties. The presence of Albite as observed on the XRD may predict possible mineralisation of CO2 to form Dawsonite when reservoir is injected with CO2. The Barremian sandstone which straddles the Aptian shale at the top and the Hauterivian Shale and Siltsone deposit at the bottom holds a good promise for a potential CO2 storage. An estimated volume of CO2 that could be stored in the reservoir of the Barremian sandstone in zone 8 is limited to the lateral seal of shale above the reservoir in zone 7 of the Aptian age. The method used to determine the potential storage capacity of CO2 was performed by Alexandros Tasianas and Nikolaos Koukouzas (2016). The Equation used to determine CO2 storage capacity is: mCO2 = RV * Ø * Sg * δ(CO2) . / 2021-09-01
56

Soil organic carbon pools in turfgrass systems of Ohio

Singh, Mamta Hari Om, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 129-137).
57

Time-lapse seismic modeling and production data assimilation for enhanced oil recovery and CO2 sequestration

Kumar, Ajitabh 15 May 2009 (has links)
Production from a hydrocarbon reservoir is typically supported by water or carbon dioxide (CO2) injection. CO2 injection into hydrocarbon reservoirs is also a promising solution for reducing environmental hazards from the release of green house gases into the earth’s atmosphere. Numerical simulators are used for designing and predicting the complex behavior of systems under such scenarios. Two key steps in such studies are forward modeling for performance prediction based on simulation studies using reservoir models and inverse modeling for updating reservoir models using the data collected from field. The viability of time-lapse seismic monitoring using an integrated modeling of fluid flow, including chemical reactions, and seismic response is examined. A comprehensive simulation of the gas injection process accounting for the phase behavior of CO2-reservoir fluids, the associated precipitation/dissolution reactions, and the accompanying changes in porosity and permeability is performed. The simulation results are then used to model the changes in seismic response with time. The general observation is that gas injection decreases bulk density and wave velocity of the host rock system. Another key topic covered in this work is the data assimilation study for hydrocarbon reservoirs using Ensemble Kalman Filter (EnKF). Some critical issues related to EnKF based history matching are explored, primarily for a large field with substantial production history. A novel and efficient approach based on spectral clustering to select ‘optimal’ initial ensemble members is proposed. Also, well-specific black-oil or compositional streamline trajectories are used for covariance localization. Approach is applied to the Weyburn field, a large carbonate reservoir in Canada. The approach for optimal member selection is found to be effective in reducing the ensemble size which was critical for this large-scale field application. Streamline-based covariance localization is shown to play a very important role by removing spurious covariances between any well and far-off cell permeabilities. Finally, time-lapse seismic study is done for the Weyburn field. Sensitivity of various bulk seismic parameters viz velocity and impedance is calculated with respect to different simulation parameters. Results show large correlation between porosity and seismic parameters. Bulk seismic parameters are sensitive to net overburden pressure at its low values. Time-lapse changes in pore-pressure lead to changes in bulk parameters like velocity and impedance.
58

Dendritic and linear polymers for separations

Gonzalez, Sergio Omar 17 February 2005 (has links)
Most new fields in chemistry usually began as a curiosity by the researchers, followed by an intrinsic interest in basic biological, physical and chemical properties of reactions, interactions, structural features, and response to external stimuli by chemical elements and/or chemical compounds. If the “curiosity” has appealing bio-physico-chemical properties this trend is followed by studies on the possible applications of such new fields. As a result, is it expected that these curiosities develop or give insights into new technologies. The development of the field of dendrimer chemistry is no different. In fact, dendrimer chemistry illustrates this trend fittingly. The research in this dissertation follows a similar trend. First, the synthesis of a melamine-based dendrimer is achieved. The synthesis illustrates the concept of using triazines as building blocks in dendrimer synthesis. The characterization of this molecule was followed by a basic inquiry of the properties that were unique relative to its composition. This dendrimer is compared against a small library of similar dendrimers in a structure-activity relationship (SAR) study. From the basic concept of an SAR, we moved toward more applied studies of these molecules. The grafting of organic molecules onto inorganic supports has had influences in the fields of catalysis, separations, and sensors. We developed protocols for the grafting of melamine-based molecules onto hydroxyl rich surfaces. After extensive characterization using solution and surface analyses, we tested the sequestration abilities of these new materials toward the separation of molecules of environmental importance from water. Following the data collected in these experiments, we moved toward a different type of applied technology. The use of linear polymers for separations instead of dendrimers is more attractive from an engineering perspective. We then used what was learned from the study of the separations performed by dendrimers and applied it to the design of linear polymers. We take advantage of a latent solid phase response to external stimuli to remove the herbicide atrazine from aqueous solution to the limit of detection.
59

Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas

Hernandez Arciniegas, Gonzalo 30 October 2006 (has links)
Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO2 disposal in high-rank coals. Low-rank coals in the Gulf Coastal plain, specifically in Texas, are possible targets for CO2 sequestration and enhanced methane production. This research determines the technical feasibility of CO2 sequestration in Texas low-rank coals in the Wilcox Group in east-central Texas and the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. It includes deterministic and probabilistic simulation studies and evaluates both CO2 and flue gas injection scenarios. Probabilistic simulation results of 100% CO2 injection in an 80-acre 5-spot pattern indicate that these coals with average net thickness of 20 ft can store 1.27 to 2.25 Bcf of CO2 at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of 50% CO2 - 50% N2 injection in the same 80-acre 5-spot pattern indicate that these coals can store 0.86 to 1.52 Bcf of CO2, with an ECBM recovery of 0.62 to 1.10 Bcf. Simulation results of flue gas injection (87% N2 - 13% CO2) indicate that these same coals can store 0.34 to 0.59 Bcf of CO2, with an ECBM recovery of 0.68 to 1.20 Bcf. Methane resources and CO2 sequestration potential of low-rank coals of the Wilcox Group Lower Calvert Bluff (LCB) formation in east-central Texas are significant. Resources from LCB low-rank coals in the Wilcox Group in east-central Texas are estimated to be between 6.3 and 13.6 Tcf of methane, with a potential sequestration capacity of 1,570 to 2,690 million tons of CO2. Sequestration capacity of the LCB lowrank coals in the Wilcox Group in east-central Texas equates to be between 34 and 59 years of emissions from six power plants in this area. These technical results, combined with attractive economic conditions and close proximity of many CO2 point sources near unmineable coalbeds, could generate significant projects for CO2 sequestration and ECBM production in Texas low-rank coals.
60

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin

Agrawal, Angeni 17 September 2007 (has links)
Carbon dioxide emissions are considered a major source of increased atmospheric CO2 levels leading towards global warming. CO2 sequestration in coal bed reservoirs is one technique that can reduce the concentration of CO2 in the air. In addition, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States. This basin was studied to investigate the potential of CO2 sequestration and ECBM. Primary recovery of methane is controversial ranging between 20-60% based on reservoir properties in coal bed reservoirs15. Using CO2 sequestration as a secondary recovery technique can enhance coal bed methane recovery up to 30%. Within the San Juan Basin, permeability ranges from 1 md to 100 md. The Fairway region is characterized with higher ranges of permeability and lower pressures. On the western outskirts of the basin, there is a transition zone characterized with lower ranges of permeability and higher pressures. Since the permeability is lower in the transition zone, it is uncertain whether this area is suitable for CO2 sequestration and if it can deliver enhanced coal bed methane recovery. The purpose of this research is to determine the economic feasibility of sequestering CO2 to enhance coal bed methane production in the transition zone of the San Juan Basin Fruitland coal seams. The goal of this research is two- fold. First, to determine whether there is a potential to enhance coal bed methane recovery by using CO2 injection in the transition zone of the San Juan Basin. The second goal is to identify the optimal design strategy and utilize a sensitivity analysis to determine whether CO2 sequestration/ECBM is economically feasible. Based on the results of my research, I found an optimal design strategy for four 160- acre spacing wells. With a high rate injection of CO2 for 10 years, the percentage of recovery can increase by 30% for methane production and it stores 10.5 BCF of CO2. The economic value of this project is $17.56 M and $19.07 M if carbon credits were granted at a price of $5.00/ton. If CO2 was not injected, the project would only give $15.55 M.

Page generated in 0.1289 seconds