• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 323
  • 66
  • 65
  • 13
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 643
  • 502
  • 98
  • 96
  • 90
  • 84
  • 63
  • 58
  • 55
  • 52
  • 49
  • 46
  • 45
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A Data-Driven Approach for the Development of a Decision Making Framework for Geological CO2 Sequestration in Unmineable Coal Seams

Miskovic, Ilija 18 January 2012 (has links)
In today's energy constrained world, carbon capture and sequestration can play an essential role in mitigating greenhouse gas emissions, while simultaneously maintaining a robust and affordable energy supply. This technology is an end-of-pipe solution that does not contribute to a decrease of the production of greenhouse gases, but is very useful as a transition solution on the way towards other sustainable energy production mechanisms. This research involves the development of a comprehensive decision making framework for assessing the techno-economic feasibility of CO2 sequestration in unmineable coal seams, with the Central Appalachian Basin chosen for analysis due to the availability of empirical data generated through recent characterization and field validation studies. The studies were conducted in order to assess the sequestration capacity of coal seams in the Central Appalachian Basin and their potential for enhanced coal bed methane recovery. The first stage of this research involves assessment of three major sequestration performance parameters: capacity, injectivity, and containment. The assessment is focused on different attributes and reservoir properties, characteristic of deep unmineable coal seams in the Central Appalachian Basin. Quantitative and qualitative conclusions obtained through this review process are used later in the identification of the minimum set of technical information necessary for effective design and development of CO2 storage operations. The second section of this dissertation analyzes economic aspects of CO2 sequestration. This segment of the research uses a real options analysis to evaluate the impact of major sources of uncertainty on the total cost of developing and operating a CCS project in a regulatory environment that expects implementation of carbon taxes, but with uncertainty about the timing of this penalty. Finally, all quantitative and qualitative information generated in the first two stages of this research were used for development of a decision making framework/matrix that summarizes the interactions between major technical and economic parameters and constraints, on the other hand, and their impact on overall feasibility of CO2 sequestration in unmineable coal seams. This framework will provide user with capability to address complex problems in a more systematic way and to analyze the most efficient way to utilize available resources. / Ph. D.
92

A Geotechnical Perspective on Carbon Sequestration in Clay using Gasifier Biochar

Williams, James Michael 10 August 2018 (has links)
There is a growing need for employing sustainable soil improvement techniques. Concurrently, soil carbon sequestration methods continue to receive more attention in an attempt to reduce greenhouse gas levels contributing to climate change. Exploring the use of gasifier biochar for soil improvement can possibility address these two needs simultaneously. This study investigates the effect of gasifier biochar amendment on mechanical, chemical and hydraulic properties of a local clay with poor engineering properties. Specifically, strength, swelling, compressibility, collapsibility, permeability, water retention, cation exchange capacity, pH, and microstructural characteristics were determined for the clay amended with 5, 10, and 20% biochar. Two sizes of biochar were used. The results showed that biochar amendment improves the strength, swelling potential, permeability, and water retention properties of the clay. Findings suggest that biochar amendment offers a sustainable solution for improving geotechnical properties of marginal soils while providing an efficient method for biospheric carbon sequestration.
93

Carbon sequestration resulting from bottomland hardwood afforestation in the Lower Mississippi Alluvial Valley (LMAV)

Nero, Bertrand Festus 02 May 2009 (has links)
The objective of this study was to examine some mechanisms of bottomland hardwood afforestation and their impacts on above- and belowground carbon sequestration. Six combinations of bottomland hardwood species and two levels each of fertilizer and herbicide were applied in a completely randomized design on two sites in the LMAV. Survival, ground line diameter and total height were monitored for two growing seasons. Soil carbon and nitrogen to a depth of one meter, herbaceous biomass, and tree biomass were sampled in the first and second years of establishment. Species mixes, fertilizer, and herbicide application significantly affected survival, growth, above- and belowground tree biomass carbon after two years of establishment. Survival was generally average, while growth for most species mixes was below expectation. Species mixes E (green ash/oak mix) and F (NRCS species mix) had the highest tree vegetation carbon both above- and belowground. Soil carbon and nitrogen were not significantly affected by any treatments.
94

Biological sequestration of carbon dioxide

Bagga, Rajinder S. January 2000 (has links)
No description available.
95

Design, Construction and Testing of Pilot Scale Photobioreactor Subsystems

Mears, Benjamin M. 07 August 2008 (has links)
No description available.
96

Reactivity of Iron-Bearing Minerals Under Carbon Sequestration Conditions

Murphy, Riley Tomas January 2011 (has links)
The rise in anthropogenic carbon dioxide in the atmosphere has caused the pursuit of adequate methods to alleviate the resulting strain on the world's ecosystem. A promising strategy is the geological sequestration of carbon dioxide, in which carbon dioxide emitted from large point sources is injected underground for storage. Under storage, carbon dioxide trapped as a carbonate mineral may be stable for geological time periods. Experiments were conducted to test the potential of ferric-bearing minerals to sequester carbon as a ferrous carbonate mineral (siderite). The formation of siderite requires the reduction of ferric ions which may be achieved by the co-injection of H2S or SO2 contaminants with CO2. Both ferrihydrite and hematite nanoparticles were exposed to an aqueous Na2S solution in the presence of supercritical CO2 (scCO2) and were analyzed in situ by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). In situ ATR-FTIR indicated that the formation of siderite occurred on the order of minutes for ferrihydrite and hematite nanoparticles. Particles were analyzed post-reaction with X-ray diffraction (XRD) and electron microscopy. XRD results indicated that ferrihydrite reacted completely to form siderite and elemental sulfur after 24 h at 100 °C, while hematite only partially reacted to form siderite and pyrite after 24 h at 70 °C. Additionally, hematite nanoparticles were exposed to H2S and scCO2 in a series of batch reactions, and the reaction products were determined by XRD as a function of CO2 and H2S partial pressures, alkalinity, salinity, time, and temperature. / Chemistry
97

Monitoring CO2 Plume Migration for a Carbon Storage-Enhanced Coalbed Methane Recovery Test in Central Appalachia

Louk, Andrew Kyle 04 February 2019 (has links)
During the past decade, carbon capture, utilization, and storage (CCUS) has gained considerable recognition as a viable option to mitigate carbon dioxide (CO2) emissions. This process involves capturing CO2 at emission sources such as power plants, refineries, and processing plants, and safely and permanently storing it in underground geologic formations. Many CO2 injection tests have been successfully conducted to assess the storage potential of CO2 in saline formations, oil and natural gas reservoirs, organic-rich shales, and unmineable coal reservoirs. Coal seams are an attractive reservoir for CO2 storage due to coal's large capacity to store gas within its microporous structure, as well as its ability to preferentially adsorb CO2 over naturally occurring methane resulting in enhanced coalbed methane (ECBM) recovery. A small-scale CO2 injection test was conducted in Southwest Virginia to assess the storage and ECBM recovery potential of CO2 in a coalbed methane reservoir. The goal of this test was to inject up to 20,000 tons of CO2 into a stacked coal reservoir of approximately 15-20 coal seams. Phase I of the injection test was conducted from July 2, 2015 to April 15, 2016 when a total of 10,601 tons of CO2 were injected. Phase II of the injection was conducted from December 14, 2016 to January 30, 2017 when an additional 2,662 tons of CO2 were injected, for a total of 13,263 total tons of CO2 injected. A customized monitoring, verification, and accounting (MVA) plan was created to monitor CO2 injection activities, including surface, near-surface, and subsurface technologies. As part of this MVA plan, chemical tracers were used as a tool to help track CO2 plume migration within the reservoir and determine interwell connectivity. The work presented in this dissertation will discuss the development and implementation of chemical tracers as a monitoring tool, detail wellbore-scale tests performed to characterize CO2 breakthrough and interwell connectivity, and present results from both phases of the CO2 injection test. / PHD / During the past decade, carbon capture, utilization, and storage (CCUS) has gained considerable recognition as a viable option to mitigate carbon dioxide (CO2) emissions. This process involves capturing CO2 at emission sources such as power plants, refineries, and processing plants, and safely and permanently storing it in underground geologic formations. Many CO2 injection tests have been successfully conducted to assess the storage potential of CO2 in saline formations, oil and natural gas reservoirs, organic-rich shales, and unmineable coal reservoirs. Coal seams are an attractive reservoir for CO2 storage due to coal’s large capacity to store gas within its microporous structure, as well as its ability to preferentially adsorb CO2 over naturally occurring methane resulting in enhanced coalbed methane (ECBM) recovery. A small-scale CO2 injection test was conducted in Southwest Virginia to assess the storage and ECBM recovery potential of CO2 in a coalbed methane reservoir. The goal of this test was to inject up to 20,000 tons of CO2 into a stacked coal reservoir of approximately 15-20 coal seams. Phase I of the injection test was conducted from July 2, 2015 to April 15, 2016 when a total of 10,601 tons of CO2 were injected. Phase II of the injection was conducted from December 14, 2016 to January 30, 2017 when an additional 2,662 tons of CO2 were injected, for a total of 13,263 total tons of CO2 injected. A customized monitoring, verification, and accounting (MVA) plan was created to monitor CO2 injection activities, including surface, near-surface, and subsurface technologies. As part of this MVA plan, chemical tracers were used as a tool to help track CO2 plume migration within the reservoir and determine interwell connectivity. The work presented in this dissertation will discuss the development and implementation of chemical tracers as a monitoring tool, detail wellbore-scale tests performed to characterize CO2 breakthrough and interwell connectivity, and present results from both phases of the CO2 injection test.
98

Passive Tomography to Image Stress Redistribution Prior to Failure on Berea Sandstone and Marcellus Shale for Caprock Integrity

Sadtler, Daniel Allan 12 June 2012 (has links)
A recent concern is the cause and effect of global climate change. Many institutions give credit for these changes to the increased levels of greenhouse gases in the atmosphere, in particular the increase in the amount of carbon dioxide present. There is a growing interest in carbon capture and storage (CCS) as a means to reduce the global impact of CO₂ on the climate as a greenhouse gas. Carbon capture is the process of removing CO₂ from the atmosphere as well as preventing it from entering the atmosphere by means of exhaust. The captured carbon is stored underground in reservoirs. These reservoirs have the storage space to handle the volume of CO₂ injected as well as a caprock layer preventing the injection fluid from returning to the surface. Additionally, CO₂ can be used for enhanced oil recovery (EOR). To monitor the injection sites used for the CO₂ storage or EOR process, the integrity of the caprock as well as the surrounding rock formations are the locations of interest. Knowing when a joint or a fracture is going to slip is necessary to prevent major failures within geologic strata. It is necessary to prevent these slips from occurring to retain the integrity of the caprock, which is keeping the fluid within the reservoirs. Passive acoustic emissions monitoring was used to determine how effectively failure locations could be located in three unique tests. Coupled with double difference tomography, the failure of a Berea Sandstone sample and Marcellus Shale sample were calculated to determine how well the stress redistribution within the sample could be mapped using the recorded data. For the main indenter tests two samples were tested, a piece of Berea Sandstone and a piece of Marcellus Shale. The secondary test was a transform shear test using sandstone, and the third test for caprock upheaval test attempted to recreate the failure of caprock due to injection pressure. For all tests, the samples were monitored using acoustic emissions software until failure or it was deduced that the test would not produce failure. The secondary tests did not progress through the data analysis as far as the indentation tests, however valuable information was gathered from these tests. The shear test demonstrated the effectiveness of the passive acoustic emissions monitoring system to record shear failure. This test provides confidence in this technology to record and located events that are not occurring in compression. The caprock upheaval tests were not successful in causing failure in the caprock, however during the testing the passive acoustic emissions monitoring system was able record and locate events that occurred within the sample around the boundary on the reservoir. At the reservoir boundaries there was evidence of fluid flowing through the reservoir, and the events align with these locations. This positive result shows that the monitoring system is able to locate events induced by fluid injection. The results of these tests provide confidence in the passive acoustic emissions monitoring system to record accurate data for the caprock integrity monitoring. The tomograms created from the recorded data accurately imaged the areas of interest within the rock samples. From these results, passive acoustic emissions monitoring systems coupled with double difference tomography has proven capable of monitoring homogeneous samples within a laboratory environment. With further testing, this technology could possibly be a viable option for monitoring carbon sequestration sites. / Master of Science
99

Thirty-year Changes in Mineral Soil C in a Cumberland Plateau Forest as Influenced by Inorganic-N, Soil Texture, and Topography

Kiser, Larry Christopher 09 January 2008 (has links)
Increases in atmospheric C have resulted in concerns about global warming and interest in finding means to sequester atmospheric C through land management strategies. The purpose of this study was to (i) compare changes in mineral soil C after a 30-year interval and (ii) examine the role of inorganic-N, soil texture, and topography in these changes. Soil samples were collected at permanently identified points on the Camp Branch Watershed, a second growth oak forest on the Cumberland Plateau in central Tennessee, in July of 1976 and archived. These points were re-sampled in July of 2006 and both archived and new samples of the 0 to 10 cm increment of the mineral soil were analyzed for C and N using the same procedures. Paired comparisons revealed changes in C and N were distinct to each of the 8 soil series. Comparison of 2006 samples to 1976 samples indicated changes in C concentration ranged from -13.1% to +12.0%. Changes in C mass ranged from -11.3% to +8.3%. Increases in C were most closely associated with increases in the C/total-N ratio. C was positively correlated to exchangeable inorganic-N in 1976 (r2 = 0.387) and 2006 (r2 = 0.107). Regression analysis revealed C increased with increasing azimuth and decreasing elevation in 1976 (r2 = 0.140). C was predicted only by clay content in 2006 (r2 = 0.079) and exhibited a negative relationship. Since topography was no longer a predictor of mineral soil C in 2006, we speculate that changes in forest cover also influenced changes in mineral soil C. / Master of Science
100

Developing Radioactive Carbon Isotope Tagging for Monitoring, Verification and Accounting in Geological Carbon Storage

Ji, Yinghuang January 2016 (has links)
In the wake of concerns about the long-term integrity and containment of sub-surface CO₂ sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO₂. This Ph.D. project has been part of a larger U.S. Department of Energy (DOE) sponsored research project to demonstrate the feasibility of a system designed to tag CO₂ with radiocarbon at a concentration of one part per trillion, which is the ambient concentration of ¹⁴C in the modern atmosphere. Because carbon found at depth is naturally free of ¹⁴C, this tag would easily differentiate pre-existing carbon in the underground from anthropogenic, injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count ¹⁴C atoms. Accordingly, we developed a ¹⁴C tagging system suitable for use at the part-per-trillion level. This tagging system uses small containers of tracer fluid of ¹⁴C enriched CO₂. The content of these containers is transferred into a CO₂ stream readied for underground injection in a controlled manner so as to tag it at the part-per-trillion level. These containers because of their shape are referred to in this document as tracer loops. The demonstration of the tracer injection involved three steps. First, a tracer loop filling station was designed and constructed featuring a novel membrane based gas exchanger, which degassed the fluid in the first step and then equilibrated the fluid with CO₂ at fixed pressure and fixed temperature. It was demonstrated that this approach could achieve uniform solutions and prevent the formation of bubbles and degassing downstream. The difference between measured and expected results of the CO₂ content in the tracer loop was below 1%. Second, a high-pressure flow loop was built for injecting, mixing, and sampling of the fast flowing stream of pressurized CO₂ tagged with our tracer. The laboratory scale evaluation demonstrated the accuracy and effectiveness of our tracer loops and injection system. The ¹⁴C/¹²C ratio we achieved in the high pressure flow loop was at the part per trillion level, and deviation between the experimental result and theoretical expectation was 6.1%. Third, a field test in Iceland successfully demonstrated a similar performance whereby ¹⁴CO₂ tracer could be injected in a controlled manner into a CO₂ stream at the part per trillion level over extended periods of time. The deviation between the experimental result and theoretical expectation was 7.1%. In addition the project considered a laser-based ¹⁴C detection system. However, the laser-based ¹⁴C detection system was shown to possess inadequate sensitivity for detecting ambient levels of ¹⁴CO₂. Alternative methods for detecting ¹⁴C, such as saturated cavity absorption ring down spectroscopy and scintillation counting may still be suitable. In summary, the project has defined the foundation of carbon-14 tagging for the monitoring, verification, and accounting of geological carbon sequestration.

Page generated in 0.1077 seconds