• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 12
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 119
  • 119
  • 91
  • 86
  • 49
  • 30
  • 28
  • 19
  • 18
  • 16
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Serine/threonine phosphorylation in mycobacterium tuberculosis : identification of protein kinase B (PknB) substrates

Lee, Guinevere Kwun Wing Queenie 05 1900 (has links)
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is one of the most prevalent infectious diseases in our world today. In order to survive within the host the bacteria need to sense and respond to changes in the environment; however, signal transduction in this bacterium is poorly understood. PknB is a serine/threonine kinase essential for the in vitro survival of M. tuberculosis and therefore a potential drug target against the bacteria. It is the goal of the current study to elucidate downstream substrates of PknB. We have found that PknB shares in vitro substrates with another serine/threonine kinase, PknH, implying the potential complexity of the signaling pathways in the bacteria. We have also provided the first description of the coupling between serine/threonine kinases PknB and PknH with a two-component system response regulator DevR, and further proposed Ser/Thr phosphorylation as the negative regulator of DevR transcription activator activity based on LC-MS/MS analysis. Finally, we have identified a previously unknown phosphoprotein glyceraldehyde 3-phosphate dehydrogenase encoded by the ORF Rv1436, which demonstrates autophosphorylation activity and which phosphorylation is independent of PknB. Overall, the current study has contributed to advance our understanding of the signal transduction pathways and phosphoproteome in Mycobacterium tuberculosis.
12

Structural basis for the recruitment of the SerThr kinase Mnk1 by the scaffolding proteins DAP5 and elF4G

Talje, Lama. January 2008 (has links)
Scaffolding proteins control the localization of protein kinases. During translation, the scaffolding proteins eIF4G and DAP5 recruit the Ser/Thr kinase Mnk1 to phosphorylate the mRNA cap-binding protein eIF4E and modulate translation. Biochemical deletion analysis previously showed that the interaction between Mnk1 and eIF4G/DAP5 is mediated by N-terminal residues in Mnk1 and C-terminal residues in eIF4G/DAP5. Using X-ray crystallography I have determined the structure (1.5 A) of the C-terminal domain of DAP5 (DAP5C). This structure reveals that DAP5C contains two atypical HEAT domains similar to the ones seen previously in the structure of the C-terminal region of eIF4G (4GC). Using ITC I showed that the Kd for the interaction between the N-terminus ofMnk1 and 4GCIDAPSC is 20 muM and 10 muM, respectively. Using NMR chemical shifts we have mapped the residues on both Mnk1 and 4GC/DAP5C which are important for maintaining this interaction. Finally, using SAXS a low resolution configuration of the hMnk1-4GC complex was modeled. It is hoped that an understanding of the structural basis for the recruitment of protein kinases to their sites of action will allow the design of small-molecule compounds that can be used to modulate the location of the kinase and hence its activity.
13

Serine/threonine phosphorylation in mycobacterium tuberculosis : identification of protein kinase B (PknB) substrates

Lee, Guinevere Kwun Wing Queenie 05 1900 (has links)
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is one of the most prevalent infectious diseases in our world today. In order to survive within the host the bacteria need to sense and respond to changes in the environment; however, signal transduction in this bacterium is poorly understood. PknB is a serine/threonine kinase essential for the in vitro survival of M. tuberculosis and therefore a potential drug target against the bacteria. It is the goal of the current study to elucidate downstream substrates of PknB. We have found that PknB shares in vitro substrates with another serine/threonine kinase, PknH, implying the potential complexity of the signaling pathways in the bacteria. We have also provided the first description of the coupling between serine/threonine kinases PknB and PknH with a two-component system response regulator DevR, and further proposed Ser/Thr phosphorylation as the negative regulator of DevR transcription activator activity based on LC-MS/MS analysis. Finally, we have identified a previously unknown phosphoprotein glyceraldehyde 3-phosphate dehydrogenase encoded by the ORF Rv1436, which demonstrates autophosphorylation activity and which phosphorylation is independent of PknB. Overall, the current study has contributed to advance our understanding of the signal transduction pathways and phosphoproteome in Mycobacterium tuberculosis.
14

Linking PAR polarity proteins to cell fate regulation : analysis of MEX-5 localization in Caenorhabditis elegans embryos /

Tenlen, Jennifer R. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 89-100).
15

Evaluating the role of lymphocyte radiosensitivity and variants in double-strand break repair genes, checkpoint kinase 2 (CHEK2) and nibrin (NBN), in the predisposition to prostate cancer : a dissertation /

Deming, Brenda Boon. January 2007 (has links)
Dissertation (Ph.D.).--University of Texas Graduate School of Biomedical Sciences at San Antonio, 2007. / Vita. Includes bibliographical references.
16

Inactivation of the Integrin-Linked Kinase in osteoblasts increases mineralization

El-Hoss, Jad. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Human Genetics. Title from title page of PDF (viewed 2008/07/30). Includes bibliographical references.
17

Regulation and mechanism of Bub1-mediated spindle checkpoint signaling

Qi, Wei January 2006 (has links)
Dissertation (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Vita. Bibliography: p. 138-139
18

Serine/threonine phosphorylation in mycobacterium tuberculosis : identification of protein kinase B (PknB) substrates

Lee, Guinevere Kwun Wing Queenie 05 1900 (has links)
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is one of the most prevalent infectious diseases in our world today. In order to survive within the host the bacteria need to sense and respond to changes in the environment; however, signal transduction in this bacterium is poorly understood. PknB is a serine/threonine kinase essential for the in vitro survival of M. tuberculosis and therefore a potential drug target against the bacteria. It is the goal of the current study to elucidate downstream substrates of PknB. We have found that PknB shares in vitro substrates with another serine/threonine kinase, PknH, implying the potential complexity of the signaling pathways in the bacteria. We have also provided the first description of the coupling between serine/threonine kinases PknB and PknH with a two-component system response regulator DevR, and further proposed Ser/Thr phosphorylation as the negative regulator of DevR transcription activator activity based on LC-MS/MS analysis. Finally, we have identified a previously unknown phosphoprotein glyceraldehyde 3-phosphate dehydrogenase encoded by the ORF Rv1436, which demonstrates autophosphorylation activity and which phosphorylation is independent of PknB. Overall, the current study has contributed to advance our understanding of the signal transduction pathways and phosphoproteome in Mycobacterium tuberculosis. / Medicine, Faculty of / Medicine, Department of / Experimental Medicine, Division of / Graduate
19

Cell Density-dependent Increase in Tyrosine-monophosphorylated ERK2 in MDCK Cells Expressing Active Ras or Raf / Ras及びRaf変異発現イヌ腎上皮細胞における、細胞密度依存性の活性型ERK2から非活性型ERK2への遷移

Kawabata, Noriyuki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20243号 / 医博第4202号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 齊藤 博英, 教授 原田 浩, 教授 秋山 芳展 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
20

Structural basis for the recruitment of the SerThr kinase Mnk1 by the scaffolding proteins DAP5 and elF4G

Talje, Lama. January 2008 (has links)
No description available.

Page generated in 0.1056 seconds