121 |
Premenstrual syndrome : food preferences, increasing brain serotonin availability and mood in women / Giordana Bruna Cross.Cross, Giordana Bruna January 2002 (has links)
Bibliography: leaves 204-215. / xviii, 215, [14] leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This study investigates the food consumption of overweight women over three menstrual cycles within a randomised double blind placebo controlled design. The aims of the study were: 1) to determine whether women identified as exhibiting PMS symptoms including increased appetite, have a preference for carbohydrate; 2) to determine if low brain levels of serotonin are involved in contributing to increased carbohydrate intake, and whether increasing the availablility of serotonin by using dexfenfluramine reduces total food intake or solely selectively reduces carbohydrate intake in women with PMS; 3) to determine whether there is a link between changes in food consumption, and the severuty of PMS symptoms. / Thesis (Ph.D.)--University of Adelaide, Dept. of General Practice, 2003
|
122 |
Reciprocal Interactions Between Monoamines as a Basis for the Antidepressant Response PotentialChernoloz, Olga 19 March 2012 (has links)
Despite substantial progress in the area of depression research, the current treatments for Major Depressive Disorder (MDD) remain suboptimal. Therefore, various medications are often used as augmenting agents in pharmacotherapy of treatment-resistant MDD. Despite the relative clinical success, little is known about the precise mechanisms of their antidepressant action.
The present work was focused on describing the effects of three drugs with distinctive pharmacological properties (pramipexole, aripiprazole, and quetiapine) on function of the monoaminergic systems involved in the pathophysiology and treatment of MDD. Reciprocal interactions between the monoamines serotonin, norepinephrine, and dopamine systems allow the drugs targeting one neuronal entity to modify the function of the other two chemospecific entities.
Electrophysiological experiments were carried out in anaesthetized rats after 2 and 14 days of drug administration to determine their immediate and the clinically-relevant long-term effects upon monoaminergic systems.
Pramipexole is a selective D2-like agonist with no affinity for any other types of receptors. It is currently approved for use in Parkinson’s disorder and the restless leg syndrome. Long-term pramipexole administration resulted in a net increase in function of both dopamine and serotonin systems.
Aripiprazole is a unique antipsychotic medication. Unlike all other representatives of this pharmacological class that antagonize D2 receptor, this drug acts as a partial agonist at this site. Chronic administration of aripiprazole elevated the discharge rate of the serotonin neurons, presumably increasing the overall serotonergic neurotransmission.
Like aripiprazole, quetiapine is one of three atypical antypsicotic drugs approved for use in MDD. Prolonged administration of quetiapine led to a significant increase in both noradrenergic and serotonergic neurotransmission. Importantly, the clinically counter-productive decrease in the spontaneous firing of catecholaminergic neurons, induced by SSRIs, was overturned by the concomitant administration of both aripiprazole and quetiapine.
The increase in serotonergic neurotransmission was a consistent finding between all three drugs studied herein. In every case this enhancement was attained in a distinctive manner. Understanding of the precise mechanisms leading to the amplification/normalization of function of monoamines enables potential construction of optimal treatment strategies thereby allowing clinicians greater pharmacological flexibility in the management of depressive symptoms.
|
123 |
Reciprocal Interactions Between Monoamines as a Basis for the Antidepressant Response PotentialChernoloz, Olga 19 March 2012 (has links)
Despite substantial progress in the area of depression research, the current treatments for Major Depressive Disorder (MDD) remain suboptimal. Therefore, various medications are often used as augmenting agents in pharmacotherapy of treatment-resistant MDD. Despite the relative clinical success, little is known about the precise mechanisms of their antidepressant action.
The present work was focused on describing the effects of three drugs with distinctive pharmacological properties (pramipexole, aripiprazole, and quetiapine) on function of the monoaminergic systems involved in the pathophysiology and treatment of MDD. Reciprocal interactions between the monoamines serotonin, norepinephrine, and dopamine systems allow the drugs targeting one neuronal entity to modify the function of the other two chemospecific entities.
Electrophysiological experiments were carried out in anaesthetized rats after 2 and 14 days of drug administration to determine their immediate and the clinically-relevant long-term effects upon monoaminergic systems.
Pramipexole is a selective D2-like agonist with no affinity for any other types of receptors. It is currently approved for use in Parkinson’s disorder and the restless leg syndrome. Long-term pramipexole administration resulted in a net increase in function of both dopamine and serotonin systems.
Aripiprazole is a unique antipsychotic medication. Unlike all other representatives of this pharmacological class that antagonize D2 receptor, this drug acts as a partial agonist at this site. Chronic administration of aripiprazole elevated the discharge rate of the serotonin neurons, presumably increasing the overall serotonergic neurotransmission.
Like aripiprazole, quetiapine is one of three atypical antypsicotic drugs approved for use in MDD. Prolonged administration of quetiapine led to a significant increase in both noradrenergic and serotonergic neurotransmission. Importantly, the clinically counter-productive decrease in the spontaneous firing of catecholaminergic neurons, induced by SSRIs, was overturned by the concomitant administration of both aripiprazole and quetiapine.
The increase in serotonergic neurotransmission was a consistent finding between all three drugs studied herein. In every case this enhancement was attained in a distinctive manner. Understanding of the precise mechanisms leading to the amplification/normalization of function of monoamines enables potential construction of optimal treatment strategies thereby allowing clinicians greater pharmacological flexibility in the management of depressive symptoms.
|
124 |
Serotonergic modulation of neurotransmission in medial vestibular nucleusHan, Lei, 韩磊 January 2011 (has links)
published_or_final_version / Physiology / Doctoral / Doctor of Philosophy
|
125 |
The role of social rank in the development, physiology and reproductive strategies in salmonidsMurua, Jefferson January 2009 (has links)
Salmonids naturally organise into social hierarchies both in the wild and aquaculture. This thesis investigates how social rank influences the physiology and development of salmonids with different life strategies using Atlantic salmon (Salmo salar) as a model. In broad terms two types of studies were conducted. Firstly osmoregulatory traits of freshwater parr prior to smolting, maturing or remaining immature where investigated using Na+ gill uptake kinetics. Highly distinct patterns emerged, especially for Na+ uptake affinity, between future alternative phenotypes, which could potentially be used as an identification tool in otherwise visually identical fish. Examination of Na+ uptake kinetics from a social status perspective revealed that first and intermediate ranked fish, which received less aggression and had lower cortisol, were better prepared for sea water entry. In the second batch of studies brain serotonergic activity (5-HIAA/5-HT), a key regulator of agonistic behaviour in vertebrates, was examined in a range of social conditions. First, the stability of social ranks was tested by food manipulation. The most dominant fish were able to retain their high status even after being kept in nutrient poor conditions. High status was associated with a high standard metabolic rate (SMR) and low brain 5-HIAA/5-HT. Secondly, studies on hierarchies with marked bimodal size asymmetries showed that upper modal group fish (UMG) became dominant. Despite being subordinate lower modal group (LMG) individuals showed similar growth rates, serotonin turnover and cortisol to UMG fish, possibly due to high aggression and fin injury sustained by high rank fish fighting for dominance. Thirdly, the association between social dominance and developmental pathway was examined in size-matched groups of immature parr and precocious parr, with the latter obtaining higher social positions and showing higher aggression. Brain serotonin turnover revealed higher 5-HIAA/5-HT in immature parr, a phenotypic distinction that was also identified in immature salmonids in aquaculture. Plasma samples from alternative life histories (immature parr, precocious parr and smolts) were also used for a preliminary investigation of potential metabolite signatures utilising metabolomic techniques.
|
126 |
Effects of 5-hydroxytryptamine (5HT) injection on the hemolymph glucose level and gene expression of reproductive shrimp (metapenaeusensis)Lam, Yan-yee., 林茵儀. January 2003 (has links)
published_or_final_version / abstract / toc / Zoology / Master / Master of Philosophy
|
127 |
Electrochemical dynamics of cytochrome P450 (2D6) biosensors for selective serotonin re-uptake inhibitors (SSRIs)Ngece, Rachel Fanelwa. January 2007 (has links)
<p>Selective serotonin re-uptake inhibitors (SSRIs) are a new class of antidepressants used mainly for the treatment of depression and other forms of related disorders. There are a number of side effects associated with these drugs which include loss of weight, sexual dysfunction, nervousness and nausea. A fast and reliable detection method such as biosensing for the determination of the SSRIs metabolic profile is therefore essential for the appropriate dosing of these drugs. Biosensors for the determination of the SSRIs biotransformation were prepared with cytochrome P450 (2D6) isoenzyme and poly (anilinonapthalene sulfonic acid) film electrochemically deposited on gold.</p>
|
128 |
Lumbar spinal cord excitability: flexors vs. extensors, sensitivity to quipazine; effects of activity following spinal transection; and expression of post-synaptic serotonin receptorsChopek, Jeremy W. 04 April 2014 (has links)
Serotonin (5-HT) is a well-known modulator of spinal cord excitability and motor output. In the spinal cord, the actions of 5-HT are primarily mediated by the 5-HT1AR, 5-HT2Rs and the 5-HT7R. Following a spinal cord transection, which results in a loss of supraspinal input, 5-HT agonists such as quipazine are used to provide excitation to the spinal cord to facilitate locomotor recovery. This is characterized by rhythmic alteration of left and right hindlimbs and ipsilateral flexor and extensor muscles. However, whether 5-HT has a global effect on spinal cord excitability or is confined to a specific motor group (i.e. flexors or extensors) is currently unknown. Furthermore, quipazine is used in conjunction with activity based interventions to enhance recovery following a spinal cord injury. However, the influence of limb activity on the responsiveness of the injured spinal cord to quipazine has not been examined. Lastly, the recovery of locomotion is at least in part thought to occur through an up-regulation of 5-HT receptors, although this has not been investigated in lumbar spinal cord.
Chapter 2 examines whether quipazine had a differential effect on flexor and extensor motor output assessed by recording flexor and extensor reflexes, motoneurons and Ia extracellular field potentials pre- and post-quipazine. It was determined that following an acute spinal transection, quipazine induced a larger flexor monosynaptic reflex (MSR) compared to the extensor MSR due to pre-synaptic but not motoneuron modulation.
Chapter 3 examines the influence of a chronic spinal transection with and without passive cycling on the hindlimb flexor and extensor MSR, both pre- and post-quipazine. It was found that three months post STx, the extensor but not flexor MSR demonstrated a hyperexcitable response, which was attenuated with passive cycling. Further, three months of passive cycling extensor MSR response to quipazine was similar to that seen in the control intact group.
Chapter 4 examined 5-HT receptor expression in flexor and extensor motoneurons three months post spinalization with or without passive cycling. Following a chronic STx, the 5-HT1AR and 5-HT2CR are down regulated, whereas the 5-HT2AR is up-regulated. Passive cycling further enhanced the 5-HT2AR expression as well as up-regulated the 5-HT7R in extensor but not flexor motoneurons.
Chapter 5 discusses the results and significance of these findings in detail.
|
129 |
Dual dopamine/serotonin treatment approach for addictive behaviourDassanayake, Ashlea Fiona January 2013 (has links)
Illicit drug abuse and addiction is a major problem in New Zealand and worldwide with approximately 12% of illicit drug users classified as having drug dependence or drug-use disorders. The chronically relapsing nature of drug addiction is a prominent feature of this disorder and a significant barrier to treating addiction. Amphetamine-type drugs, more than any other class of drugs, have seen an increase in global usage since the early 1990's. The lack of approved medications for the treatment of stimulant addiction together with an increasing treatment demand drives the need for pharmaceutical intervention. Substitute treatment approaches primarily focus on the dopamine (DA) system. However, several lines of research implicate a dual role for serotonin (5-HT). Using a benztropine (BZT) analogue, JHW 007 (JHW), and an atypical antidepressant, trazodone (TRAZ), we sought to test whether the combined modulation of DA and 5-HT during a period of extinction produced greater attenuation to drug-induced reinstatement compared to either DA or 5-HT alone. One hundred and two (102) male Long Evans rats were tested using an extinction-reinstatement model of methamphetamine (MA) addiction in conditioned place preference (CPP) (n=72) and self-administration (n=30) experimental designs. We hypothesised that a combined DA/5-HT treatment would further attenuate MA-induced reinstatement. Findings showed that JHW significantly attenuated MA-induced reinstatement in our self-administration model but not CPP, while TRAZ failed to significantly attenuate reinstatement in both experiments. The combination treatment group showed a mild attenuation to drug seeking with CPP, but this finding was not significant. Due to time restrictions, we did not test the combination group using a self-administration procedure. Unfortunately we were unable to fully address our initially proposed hypothesis, but our results with JHW add further support to this BZT analogue as a promising stimulant abuse medication.
|
130 |
The metabolism of aminotetralins in vitro and in vivoMartin, Iain J. January 1996 (has links)
No description available.
|
Page generated in 0.101 seconds