• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Timeout Reached, Session Ends? / A Methodological Framework for Evaluating the Impact of Different Session-Identification Approaches

Dietz, Florian 14 December 2022 (has links)
Die Identifikation von Sessions zum Verständnis des Benutzerverhaltens ist ein Forschungsgebiet des Web Usage Mining. Definitionen und Konzepte werden seit über 20 Jahren diskutiert. Die Forschung zeigt, dass Session-Identifizierung kein willkürlicher Prozess sein sollte. Es gibt eine fragwürdige Tendenz zu vereinfachten mechanischen Sessions anstelle logischer Segmentierungen. Ziel der Dissertation ist es zu beweisen, wie unterschiedliche Session-Ansätze zu abweichenden Ergebnissen und Interpretationen führen. Die übergreifende Forschungsfrage lautet: Werden sich verschiedene Ansätze zur Session-Identifizierung auf Analyseergebnisse und Machine-Learning-Probleme auswirken? Ein methodischer Rahmen für die Durchführung, den Vergleich und die Evaluation von Sessions wird gegeben. Die Dissertation implementiert 135 Session-Ansätze in einem Jahr (2018) Daten einer deutschen Preisvergleichs-E-Commerce-Plattform. Die Umsetzung umfasst mechanische Konzepte, logische Konstrukte und die Kombination mehrerer Mechaniken. Es wird gezeigt, wie logische Sessions durch Embedding-Algorithmen aus Benutzersequenzen konstruiert werden: mit einem neuartigen Ansatz zur Identifizierung logischer Sessions, bei dem die thematische Nähe von Interaktionen anstelle von Suchanfragen allein verwendet wird. Alle Ansätze werden verglichen und quantitativ beschrieben sowie in drei Machine-Learning-Problemen (wie Recommendation) angewendet. Der Hauptbeitrag dieser Dissertation besteht darin, einen umfassenden Vergleich von Session-Identifikationsalgorithmen bereitzustellen. Die Arbeit bietet eine Methodik zum Implementieren, Analysieren und Evaluieren einer Auswahl von Mechaniken, die es ermöglichen, das Benutzerverhalten und die Auswirkungen von Session-Modellierung besser zu verstehen. Die Ergebnisse zeigen, dass unterschiedlich strukturierte Eingabedaten die Ergebnisse von Algorithmen oder Analysen drastisch verändern können. / The identification of sessions as a means of understanding user behaviour is a common research area of web usage mining. Different definitions and concepts have been discussed for over 20 years: Research shows that session identification is not an arbitrary task. There is a tendency towards simplistic mechanical sessions instead of more complex logical segmentations, which is questionable. This dissertation aims to prove how the nature of differing session-identification approaches leads to diverging results and interpretations. The overarching research question asks: will different session-identification approaches impact analysis and machine learning tasks? A comprehensive methodological framework for implementing, comparing and evaluating sessions is given. The dissertation provides implementation guidelines for 135 session-identification approaches utilizing a complete year (2018) of traffic data from a German price-comparison e-commerce platform. The implementation includes mechanical concepts, logical constructs and the combination of multiple methods. It shows how logical sessions were constructed from user sequences by employing embedding algorithms on interaction logs; taking a novel approach to logical session identification by utilizing topical proximity of interactions instead of search queries alone. All approaches are compared and quantitatively described. The application in three machine-learning tasks (such as recommendation) is intended to show that using different sessions as input data has a marked impact on the outcome. The main contribution of this dissertation is to provide a comprehensive comparison of session-identification algorithms. The research provides a methodology to implement, analyse and compare a wide variety of mechanics, allowing to better understand user behaviour and the effects of session modelling. The main results show that differently structured input data may drastically change the results of algorithms or analysis.

Page generated in 0.3086 seconds