Spelling suggestions: "subject:"setvalued mass"" "subject:"setvalued mas""
11 |
Non-linear functional analysis and vector optimization.January 1999 (has links)
by Yan Shing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 78-80). / Abstract also in Chinese. / Chapter 1 --- Admissible Points of Convex Sets --- p.7 / Chapter 1.1 --- Introduction and Notations --- p.7 / Chapter 1.2 --- The Main Result --- p.7 / Chapter 1.2.1 --- The Proof of Theoreml.2.1 --- p.8 / Chapter 1.3 --- An Application --- p.10 / Chapter 2 --- A Generalization on The Theorems of Admissible Points --- p.12 / Chapter 2.1 --- Introduction and Notations --- p.12 / Chapter 2.2 --- Fundamental Lemmas --- p.14 / Chapter 2.3 --- The Main Result --- p.16 / Chapter 3 --- Introduction to Variational Inequalities --- p.21 / Chapter 3.1 --- Variational Inequalities in Finite Dimensional Space --- p.21 / Chapter 3.2 --- Problems Which Relate to Variational Inequalities --- p.25 / Chapter 3.3 --- Some Variations on Variational Inequality --- p.28 / Chapter 3.4 --- The Vector Variational Inequality Problem and Its Relation with The Vector Optimization Problem --- p.29 / Chapter 3.5 --- Variational Inequalities in Hilbert Space --- p.31 / Chapter 4 --- Vector Variational Inequalities --- p.36 / Chapter 4.1 --- Preliminaries --- p.36 / Chapter 4.2 --- Notations --- p.37 / Chapter 4.3 --- Existence Results of Vector Variational Inequality --- p.38 / Chapter 5 --- The Generalized Quasi-Variational Inequalities --- p.44 / Chapter 5.1 --- Introduction --- p.44 / Chapter 5.2 --- Properties of The Class F0 --- p.46 / Chapter 5.3 --- Main Theorem --- p.53 / Chapter 5.4 --- Remarks --- p.58 / Chapter 6 --- A set-valued open mapping theorem and related re- sults --- p.61 / Chapter 6.1 --- Introduction and Notations --- p.61 / Chapter 6.2 --- An Open Mapping Theorem --- p.62 / Chapter 6.3 --- Main Result --- p.63 / Chapter 6.4 --- An Application on Ordered Normed Spaces --- p.66 / Chapter 6.5 --- An Application on Open Decomposition --- p.70 / Chapter 6.6 --- An Application on Continuous Mappings from Order- infrabarreled Spaces --- p.72 / Bibliography
|
12 |
Applications of variational analysis to optimal trajectories and nonsmooth Hamilton-Jacobi theory /Galbraith, Grant N., January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 87-91).
|
13 |
Dualization of monotone generalized equations /Pennanen, Teemu, January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 85-91).
|
14 |
Fixed points of single-valued and multi-valued mappings with applicationsStofile, Simfumene January 2013 (has links)
The relationship between the convergence of a sequence of self mappings of a metric space and their fixed points, known as the stability (or continuity) of fixed points has been of continuing interest and widely studied in fixed point theory. In this thesis we study the stability of common fixed points in a Hausdorff uniform space whose uniformity is generated by a family of pseudometrics, by using some general notations of convergence. These results are then extended to 2-metric spaces due to S. Gähler. In addition, a well-known theorem of T. Suzuki that generalized the Banach Contraction Principle is also extended to 2-metric spaces and applied to obtain a coincidence theorem for a pair of mappings on an arbitrary set with values in a 2-metric space. Further, we prove the existence of coincidence and fixed points of Ćirić type weakly generalized contractions in metric spaces. Subsequently, the above result is utilized to discuss applications to the convergence of modified Mann and Ishikawa iterations in a convex metric space. Finally, we obtain coincidence, fixed and stationary point results for multi-valued and hybrid pairs of mappings on a metric space.
|
15 |
Stability, dissipativity, and optimal control of discontinuous dynamical systemsSadikhov, Teymur 06 April 2015 (has links)
Discontinuous dynamical systems and multiagent systems are encountered in numerous engineering applications. This dissertation develops stability and dissipativity of nonlinear dynamical systems with discontinuous right-hand sides, optimality of discontinuous feed-back controllers for Filippov dynamical systems, almost consensus protocols for multiagent systems with innaccurate sensor measurements, and adaptive estimation algorithms using multiagent network identifiers. In particular, we present stability results for discontinuous dynamical systems using nonsmooth Lyapunov theory. Then, we develop a constructive feedback control law for discontinuous dynamical systems based on the existence of a nonsmooth control Lyapunov function de fined in the sense of generalized Clarke gradients and set-valued Lie derivatives. Furthermore, we develop dissipativity notions and extended Kalman-Yakubovich-Popov conditions and apply these results to develop feedback interconnection stability results for discontinuous systems. In addition, we derive guaranteed gain, sector, and disk margins for nonlinear optimal and inverse optimal discontinuous feedback regulators that minimize a nonlinear-nonquadratic performance functional for Filippov dynamical systems. Then, we provide connections between dissipativity and optimality of nonlinear discontinuous controllers for Filippov dynamical systems. Furthermore, we address
the consensus problem for a group of agent robots with uncertain interagent measurement data, and show that the agents reach an almost consensus state and converge to a set centered at the centroid of agents initial locations. Finally, we develop an adaptive estimation framework predicated on multiagent network identifiers with undirected and directed graph topologies that identifies the system state and plant parameters online.
|
16 |
Développements récents en analyse multivoque : prédérivées et optimisation multivoque / Récent developments in set-valued analysis : préderivatives and set optimizationMarcelin, Yvesner 22 June 2016 (has links)
Les travaux de cette thèse portent sur les prédérivées d'applications multivoques et la théorie de l'optimisation. Dans un premier temps, nous établissons des résultats d'existence de différents types de prédérivées pour certaines classes d'applications. Spécialement, pour des applications multivoques possédant certaines propriétés de convexité. Par la suite, nous appliquons ces résultats dans le cadre de la théorie de l'optimisation multivoque en établissant des conditions nécessaires et des conditions suffisantes d'optimalité. Sous des hypothèses de convexité, nous établissons des résultats naturels propres aux minimiseurs en optimisation convexe. Ensuite, nous appliquons quelques uns de nos résultats théoriques à un modèle de l'économie du bien-être en établissant notamment une équivalence entre les allocations optimales faibles de Pareto du modèle économique et les minimiseurs faibles d'un problème d'optimisation multivoque associé. D'autre part, en utilisant certaines notions d'intérieur généralisé existant dans la littérature, nous discutons dans un cadre unifié divers concepts de minimiseurs relaxés. En vue d'étudier leur stabilité, nous introduisons une topologie sur des espaces vectoriels ordonnés dont découle une notion de convergence nous permettant de définir deux concepts de convergence variationnelle qui sont ensuite utilisés pour établir la stabilité supérieure et la stabilité inférieure des ensembles de minimiseurs relaxés considérés dans ce travail. / This work is devoted to the study of prederivatives of set-valued maps and the theory of optimization. First, we establish results regarding the existence of several kinds of prederivatives for some classes set-valued maps. Specially for set-valued maps enjoying convexity properties. Subsequently, we apply our results in the framework of set optimization by establishing both necessary and sufficient optimality conditions, involving such prederivatives, for set optimization problems. Under convexity assumptions, we prove some natural results fitting the paradigm of minimizers in convex optimization. Then, we apply some of our theoretical results to a model of welfare economics by establishing in particular an equivalence between the weak Pareto optimal allocations of the model and the weak minimizes of a set optimization problem associated. Taking adventadge of several generalized interiority notions existing in the literature, we discuss in a unified way corresponding notions of relaxed minimizers In order to establish stability results, we introduce a topology on vector ordered spaces from which we derive a concept of convergence that we use to define two concepts of variational convergence that allow us to study both the upper and the lower stability of sets of relaxed minimizers we consider.
|
Page generated in 0.0697 seconds