1 |
Predicting the Settling Velocity of Lime Softening Flocs using Fractal GeometryVahedi, Arman 22 September 2010 (has links)
Stokes’ law that is traditionally used for modeling the sedimentation of flocs, incorrectly assumes that the floc is solid and spherical. Consequently the settling rates of flocs cannot be estimated using the Stokes law.
The application of fractal dimensions to study the internal structure and settling of flocs formed in lime softening process was investigated. An optical microscope with motorized stage was used to measure the fractal dimensions of lime softening flocs directly on their images in 2 and 3D space. The fractal dimensions of the lime softening flocs were 1.15-1.27 for floc boundary, 1.49-1.90 for cross-sectional area and 2.55-2.99 for floc volume. Free settling tests were used for indirect determination of 3D fractal dimension. The measured settling velocity of flocs ranged from 0.1 to 7.1 mm/s (average: 2.37 mm/s) for the flocs with equivalent diameters from 10µm to 260µm (average: 124 µm).
Floc settling model incorporating variable floc fractal dimensions as well as variable primary particle size was found to describe the settling velocity of large (>60 µm) lime softening flocs better than Stokes’ law. Settling velocities of smaller flocs (<60 µm) could still be quite well predicted by the Stokes’ law. The variation of fractal dimensions with lime floc size in this study indicated that two mechanisms are involved in the formation of these flocs: cluster-cluster aggregation for small flocs (>60 µm) and diffusion-limited aggregation for large flocs (<60 µm). Therefore, the relationship between the floc fractal dimension and floc size appears to be determined by floc aggregation mechanisms.
The settling velocity of lime softening flocs was also modeled by a general model that assumes multiple normally distributed fractal dimensions for each floc size. The settling velocities were in the range of 0-10mm/s and in good agreement with measured settling velocities (0.1-7.1mm/s). The Stokes’ law overestimates the settling velocity of lime flocs. It seems that the settling velocity of flocs is mainly controlled by aggregation mechanisms and forming large floc does not guarantee improved sedimentation.
The multifractal analysis of lime softening flocs showed that these aggregates are multifractal and a spectrum of fractal dimensions is required to describe the structure of an individual floc.
|
2 |
Predicting the Settling Velocity of Lime Softening Flocs using Fractal GeometryVahedi, Arman 22 September 2010 (has links)
Stokes’ law that is traditionally used for modeling the sedimentation of flocs, incorrectly assumes that the floc is solid and spherical. Consequently the settling rates of flocs cannot be estimated using the Stokes law.
The application of fractal dimensions to study the internal structure and settling of flocs formed in lime softening process was investigated. An optical microscope with motorized stage was used to measure the fractal dimensions of lime softening flocs directly on their images in 2 and 3D space. The fractal dimensions of the lime softening flocs were 1.15-1.27 for floc boundary, 1.49-1.90 for cross-sectional area and 2.55-2.99 for floc volume. Free settling tests were used for indirect determination of 3D fractal dimension. The measured settling velocity of flocs ranged from 0.1 to 7.1 mm/s (average: 2.37 mm/s) for the flocs with equivalent diameters from 10µm to 260µm (average: 124 µm).
Floc settling model incorporating variable floc fractal dimensions as well as variable primary particle size was found to describe the settling velocity of large (>60 µm) lime softening flocs better than Stokes’ law. Settling velocities of smaller flocs (<60 µm) could still be quite well predicted by the Stokes’ law. The variation of fractal dimensions with lime floc size in this study indicated that two mechanisms are involved in the formation of these flocs: cluster-cluster aggregation for small flocs (>60 µm) and diffusion-limited aggregation for large flocs (<60 µm). Therefore, the relationship between the floc fractal dimension and floc size appears to be determined by floc aggregation mechanisms.
The settling velocity of lime softening flocs was also modeled by a general model that assumes multiple normally distributed fractal dimensions for each floc size. The settling velocities were in the range of 0-10mm/s and in good agreement with measured settling velocities (0.1-7.1mm/s). The Stokes’ law overestimates the settling velocity of lime flocs. It seems that the settling velocity of flocs is mainly controlled by aggregation mechanisms and forming large floc does not guarantee improved sedimentation.
The multifractal analysis of lime softening flocs showed that these aggregates are multifractal and a spectrum of fractal dimensions is required to describe the structure of an individual floc.
|
3 |
Characteristics of suspended and bottom sediment in natural and engineered freshwater systemsDroppo, Ian Gerald January 2000 (has links)
No description available.
|
4 |
A combined experimental and numerical approach to the assessment of floc settling velocity using fractal geometryMoruzzi, R.B., Bridgeman, John, Silva, P.A.G. 20 June 2020 (has links)
Yes / Sedimentation processes are fundamental to solids/liquid separation in water and wastewater
treatment, and therefore a robust understanding of the settlement characteristics of mass fractal
aggregates (flocs) formed in the flocculation stage is fundamental to optimized settlement tank
design and operation. However, the use of settling as a technique to determine aggregates’ traits is
limited by current understanding of permeability. In this paper, we combine experimental and
numerical approaches to assess settling velocities of fractal aggregates. Using a non-intrusive in situ
digital image-based method, three- and two-dimensional fractal dimensions were calculated for
kaolin-based flocs. By considering shape and fractal dimension, the porosity, density and settling
velocities of the flocs were calculated individually, and settling velocities compared with those of
spheres of the same density using Stokes’ law. Shape analysis shows that the settling velocities for
fractal aggregates may be greater or less than those for perfect spheres. For example, fractal
aggregates with floc fractal dimension, Df ¼ 2.61, floc size, df > 320 μm and dp ¼ 7.5 μm settle
with lower velocities than those predicted by Stokes’ law; whilst, for Df ¼ 2.33, all aggregates of
df > 70 μm and dp ¼ 7.5 μm settled below the velocity calculated by Stokes’ law for spheres.
Conversely, fractal settling velocities were higher than spheres for all the range of sizes, when Df of
2.83 was simulated. The ratio of fractal aggregate to sphere settling velocity (the former being
obtained from fractal porosity and density considerations), varied from 0.16 to 4.11 for aggregates in
the range of 10 and 1,000 μm, primary particle size of 7.5 μm and a three-dimensional fractal
dimension between 2.33 and 2.83. However, the ratio decreases to the range of 0.04–2.92 when
primary particle size changes to 1.0 μm for the same fractal dimensions. Using the floc analysis
technique developed here, the results demonstrate the difference in settlement behaviour between
the approach developed here and the traditional Stokes’ law approach using solid spheres.
The technique and results demonstrate the improvements in understanding, and hence value to be
derived, from an analysis based on fractal, rather than Euclidean, geometry when considering
flocculation and subsequent clarification performance / Rodrigo B. Moruzzi is grateful to São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP) Grant 2017/19195-7 for financial support and to CNPq for the fellowship Grant 301210/2018-7.
|
5 |
Sedimentation of Organic - Inorganic Composites by Optical TurbidityHarrinauth, Reshma K 04 November 2008 (has links)
Sedimentation is one of many characterization tools used to test materials in nanotechnology. Characterization of settling behavior is complex as there are many variables which can affect sedimentation. In our research, we focused on sedimentation in colloidal systems with the aid of an optical turbidometer. Nanoparticles of CeO2 (Ceria Oxide) and TiO2 (Titanium Dioxide) are embedded onto a polymeric matrix of a thermally responsive microgel of poly(N-isopropylacrylamide) (PNIPAM) and interpenetrating chains of poly(acrylic acid) to create novel composites. The composites are loaded with the inorganic oxide nanoparticles at different weight percent from a low value of 10 weight % to 75 weight %. The loading of the colloidal particles affects the sedimentation rate. In this thesis a turbidomenter is used to characterize the settling rate, which is an important characteristic for application of these new composites.
TiO2 is a key constituent in many industrial products; cosmetics, paints, ceramics and used in waste water remediation. It is a potent photocatalyst which breaks down almost any organic compound when exposed to ultraviolet light. By combining nanoparticles of TiO2 with microgels of a polymer, the composites can facilitate use and recovery of the catalyst. Gravity settling of these loaded composites provides an easy separation of TiO2 nanoparticles. In this context, characterization of settling plays an important role. CeO2 composites are used to polish oxide coatings in the semiconductor industry and sedimentation of the composite particles is important as it can affect the efficiency of the planarization process. Therefore, measuring sedimentation of these composites is necessary.
In this study, the settling behavior is measured optically for a variety of conditions that differ in loading of inorganic nanoparticles within the microgels, temperature of the solution, and concentration of particles in solution. The overall goal is to understand the sedimentation behavior of these novel composites and facilitate their use in industrial processes.
|
6 |
A Transport Study of Sodium Phosphate Dodecahydrate Pipeline Plugging MechanismsRaju, Vijay Kumar 14 December 2001 (has links)
The thesis investigates pipeline plugging mechanisms that have occurred during interim stabilization transfers at Hanford. A laboratory-scale saltwell pumping test loop was designed to evaluate a surrogate of Hanford Tank 241-SX-104 supernate. The effect of surrogate flow rate, cooling water flow rate and phosphate concentrations on plugging mechanisms was investigated. Critical parameters like particle and agglomerate size, velocity and bed growth rate were determined. Theoretical models were used to compare the experimental pressure rise and temperature drop of the surrogate in the channel. An operating region in which a plug would not form was developed, based on the experimental results. Experiments are also reported on plug remediation. Unplugging experiments at varying pump pressure heads and residence time of plug in the line were performed.
|
7 |
Vertical Transport of Sediment from Muddy Buoyant River Plumes in the Presence of Different Modes of Interfacial InstabilitiesRouhnia, Mohamad 21 September 2016 (has links)
This study focuses on deposition processes from sediment laden buoyant river plumes in deltaic regions. The goal is to experimentally examine the effects of various physical phenomena influencing the rate at which sediment is removed from the plume. Previous laboratory and field measurements have suggested that, at times, sedimentation can take place at rates higher than that expected from individual particle settling (i.e., C{W}_{s}). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability sets of experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurement were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a separate floc camera setup and image analysis routines. Results from the stratification tank experiments suggest that the settling-driven gravitational instabilities do occur in the presence of flocs, and that they can produce sedimentation rates higher than those predicted from floc settling. A simple cylinder based force balance approach adopting the concept of critical Grashof number was used to develop a model for the effective settling velocity under settling-driven instabilities that is a function of sediment concentration in the plume only. Results from the stratification flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This settling rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to U{Ri}^{-2}.
Following the experiments, analyses were made among contributions of different mechanisms on the total deposition rate, and the locations that the various mechanisms may be active in the length of a plume. This analysis leads to a conceptual discretization of a plume into three zones of sedimentation behavior and Richardson number. The first zone is the supercritical near-field plume with intense interface mixing. Zone two represents the subcritical region where interface mixing still occurs, and zone three is the high Richardson number zone where mixing at the interface is effectively nonexistent. In zones one and two, individual floc settling and shear-induced settling mechanisms play the major roles in removing sediment from the plume. While, shear-induced settling rate was found to be maximum near the river mouth, its share of the total settling rate increases in the crossshore direction, since sand and large particulates deposit near the inlet and only small particles (with relatively low settling velocity) remain as the plume propagates. The third zone, starts when the interfacial mixing diminishes and leaking commences. / Ph. D.
|
8 |
Hydrocyclone Implementation at Two Wastewater Treatment Facilities To Promote Overall Settling ImprovementPartin, Allison Kaitlyn 11 November 2019 (has links)
Hydrocyclone density-driven particle separation may offer up improved settling performance for wastewater treatment facilities experiencing poor settleability. Hydrocyclones are fed mixed liquor through the feed inlet and experience a centrifugal motion that separates solids based on density. The variation in hydrocyclone nozzle sizes will report different calculated hydraulic and mass split percentages for the overflow and underflow. Previous research conducted with hydrocyclones have at multiple full-scale facilities used a 10 m3/hr hydrocyclone to promote better settleability as well as aid the formation of aerobic granular sludge (AGS). There has been a multitude of settling improvement experiments and initiatives for full scale wastewater treatment. However, little research has been produced utilizing larger hydrocyclones (20 m3/hr) at a full-scale wastewater treatment facility during continuous operation.
Two Hampton Roads Sanitation District (HRSD) plants served as sites for this research: James River (JR) Wastewater Treatment Plant located in Newport News, VA and Urbanna (UB) Wastewater Treatment Plant located in Urbanna, VA. Both treatment facilities have utilized the hydrocyclone for more than two years, to fulfill wasting requirements. The JR plant operates the hydrocyclone continuously for wasting purposes, while UB only uses the hydrocyclone for approximately 30-45 minutes per day. In order to evaluate the effectiveness of the hydrocyclone and its overall impact on settleability at the JR plant, eight hydrocyclones were installed. JR samples were taken from the underflow sample port (representing a mixture of underflow samples representing the number of hydrocyclones operational at the sample time) and overflow samples were taken from the outfall point of a single hydrocyclone. The UB plant only operated one 5 m3/hr hydrocyclone on Treatment Train 1 during wasting operations, while Treatment Train 2 served as the control train for the duration of this research. Hydrocyclone performance at JR was assessed through direct measurement of hydraulic and mass split of the underflow and overflow components, initial settling velocity (ISV), sludge volume index (SVI), and
SVI5/SVI30 ratio. UB hydrocyclone and settling performance was measured by ISV, SVI5, SVI30, and SVI5/SVI30 ratios during different comparison experiments: hydrocyclone vs. no hydrocyclone, hydrocyclone vs. polymer addition, and hydrocyclone with polymer addition to Train 1 vs. polymer-only addition to Train 2. Nutrient concentrations from both treatment trains were collected and analyzed to determine any significant changes based on hydrocyclone use.
T-test statistical analysis, and a dose response analysis included direct measurements of the ISV, SVI5, SVI30, mass split percentages, along with the effect of polymer with and without the use of a mechanical selector.
Hydrocyclone settleability measurements at JR over time revealed a statistically significant positive correlation with the ISV, SVI5, and SVI30 measurements of the aeration effluent. Therefore, the hydrocyclone statistically had a strong impact on three settling parameters that are instrumental in determining overall settling efficiency. Statistically, no strong correlation was determined between the hydrocyclone operation and the total phosphorus (TP) concentration in the secondary effluent, or the ferric addition to the secondary clarifiers. The dose response based on the underflow ISV rate provided understanding of the nozzle comparison and the effect it provided to the underflow sample.
Hydrocyclone performance at UB was hindered by the re-seed of Train 1 (inDENSE™) due to over wasting, and most of the data were not representative. Before the re-seed, hydrocyclone performance was improving the overall settleability of the mixed liquor in comparison to Train 2 (Control). All settling parameters measured were in favor of the hydrocyclone operation. After the re-seed the plant mixed liquor changed microbial populations for a brief time and was not representative of the overall treatment efficacy. The hydrocyclone did provide a quicker settling velocity than the polymer addition when the polymer addition was steady, and through both polymeric spikes. Polymeric addition to both trains, while inDENSE™ train still employing the hydrocyclone did not provide any conclusive data as to whether polymer addition with the use of a hydrocyclone was more effective than polymer-only addition. Nutrient profiles from UB did not provide any change in NH4-N, NO3-N, NO2-N, or PO4-P, with the hydrocyclone being operational or not on the secondary clarifier effluent. / Master of Science / Wastewater treatment facilities rely on settling tests to be indicators for plant settling performance. A way to improve plant settling is to separate the sludge on a density basis and retain the dense sludge in the system for better performance downstream, while the less dense sludge is taken out of the system. By implementing a mechanical device that can ensure the separation of dense material and be retained in the system can aide in improved plant settling performance by improving settling parameter measurements. With the ability of using a mechanical device (a hydrocyclone) to physically separate sludge on a density-basis, it will improve settling measurements of the plants taken by operators on a daily basis.
|
9 |
A Theoretical Simulation of the Settling of Proppants in a Hydraulic Fracturing ProcessAlseamr, Nisreen 01 January 2016 (has links)
Hydraulic fracturing is a process for the extraction of hydrocarbons from underground formations. It involves pumping a specialized fluid into the wellbore under high pressures to form and support fractures in the rock. Fracturing stimulates the well to increase the production of oil and the natural gas which are the pillars of the energy economy. Key to this process is the use of proppants, which are solid materials used to keep the fractures open. Understanding the transport of proppant particles through a fluid is important to improve the efficiency and reduce environmental impact of fracturing. An increase of the settling velocity for instance, will impede the hydraulic fracturing process by reducing well productivity, or necessitate use of chemical additives. This thesis presents a theoretical investigation of the settling velocity of proppant particles. The effect of different parameters on the settling velocity were studied by manipulating the main factors that can influence particle transport. These include size of the particle (300 μm- 2000 μm), sphericity, density (1200 kg/m3-3500 kg/m3) and concentration. These typical values were obtained from commercially available proppants currently used in industry. Various correlations were investigated, assuming the carrier (fracturing) fluid to be an ideal Newtonian and as a power law (non-Newtonian) fluid. This will help predict the settling velocity for proppant particles in order to increase well productivity, and improve hydraulic fracturing efficiency. The models show that changing the carrier fluid viscosity and particle properties such as diameter, density, sphericity, and concentration leads to a significant change in the proppant settling velocity. For instance, reduction in particle size, density, and sphericity tend to reduce the settling velocity, while increasing the concentration of the particles and the fluid viscosity reduce the settling velocity.
|
10 |
Characterization of Dredged Sediment Used in Coastal Restoration and Marsh Creation ProjectsMattson, Gregory A, II 16 May 2014 (has links)
To minimize coastal land loss and create new land, dredged sediment has been in use in coastal Louisiana during the last several years. Engineering properties and material characteristics of dredged material are input parameters in several mathematical models used to predict the long-term hydrodynamic behavior of the coast. Therefore, proper characterization of the dredged material is of utmost importance in the correct design of coastal restoration and land creation projects. The sedimentation characteristics of the dredged material, among other factors, depends on the (a) grain size distribution of the dredged material, (b) salinity (fresh, brackish, or saltwater environment) of the composite slurry, and (c) concentration of the solid particles in the slurry. In this research, dredged sediments obtained from actual coastal restoration projects were characterized. Furthermore, the effects of grain size distribution, salinity and solid particle concentration on sedimentation characteristics have been evaluated.
|
Page generated in 0.081 seconds