31 |
Effect of Nitrate Reduction on the Methanogenic Fermentation: Process Interactions and ModelingTugtas, Adile Evren 16 January 2007 (has links)
Combined treatment technologies for the removal of waste carbon, nitrogen, and/or sulfur under anoxic/anaerobic conditions have recently received considerable attention. It has been reported that nitrate and/or reduced N-oxides, such as nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), which are products of denitrification, suppress methanogenesis. Research was conducted to investigate the effect of N-oxides and sulfide on mixed, mesophilic (35oC) methanogenic cultures, along with the effect of the type of electron donor on the kinetics and pathway of nitrate reduction. Among all N-oxides tested, NO exerted the most and nitrate exerted the least inhibitory effect on the fermentative/methanogenic consortia. Long-term exposure of a methanogenic culture to nitrate resulted in an increase of N-oxide reduction and a decrease of methane production rates. Sulfide addition to sulfide-free enriched cultures resulted in inhibition of NO2-, NO, and N2O reduction causing accumulation of these intermediates, which in turn inhibited methanogenesis and fermentation. In nitrate-amended, sulfide-acclimated cultures, nitrate reduction occurred via dissimilatory nitrate reduction to ammonia (DNRA); thus, accumulation of N-oxides was avoided and inhibition of methanogenesis was prevented. The nitrate reduction rates in cultures fed with different electron donors followed the descending order: H2/CO2 > acetate > glucose > dextrin/peptone > propionate. Denitrification was observed in the propionate-, acetate-, and H2/CO2-fed cultures regardless of the COD/N value. Both denitrification and DNRA were observed in the dextrin/peptone- and glucose-fed cultures and the predominance of either of the two pathways was a function of the COD/N value. Nitrate reduction processes were incorporated into the IWA Anaerobic Digestion Model No. 1 (ADM1) in order to account for the effect of nitrate reduction processes on fermentation and methanogenesis. The extended ADM1 described the experimental results very well. Model simulations showed that process interactions during nitrate reduction within an overall methanogenic system cannot be explained based on only stoichiometry and kinetics, especially for batch systems and/or continuous-flow systems with periodic, shock nitrate loads. The results of this research are useful in predicting the fate of carbon-, nitrogen-, and sulfur-bearing waste material, as well as in understanding microbial process interactions, in both natural and engineered anoxic/anaerobic systems.
|
32 |
Economic feasibility of anaerobic digestion of swine manure for a grower-to-finisher hog operation in QuebecApushev, Nurlan January 2004 (has links)
Swine manure creates much public resentment in Quebec due to nutrient overloading, potential water pollution and odour. Anaerobic digestion is one of the solutions that allows to lessen the odour problem. Anaerobic bacteria in manure produce methane. The latter can be burnt to produce heat and electricity on farms. Moreover, there is a potential for receiving carbon emission reduction credits for the capturing of methane. / Investment analysis was performed to assess the economic feasibility of a potential anaerobic digestion system on a grower-to-finisher hog operation. The study was conducted for a case farm, which had plans to expand from 2000 to 4800 pigs. Greenhouse gas emission reduction credits were incorporated into one of the scenarios. A sensitivity analysis revealed the most important variables which affect the economic feasibility of anaerobic digestion.
|
33 |
Poultry slaughterhouse wastewater treatment using a static granular bed reactor (Sgbr) coupled with a hybrid sidestream membrane bioreactorRinquest, Zainab January 2017 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2017. / An increase in the demand for poultry products coupled with the potable water shortages
currently experienced in South Africa (SA), attributed to climate change among other factors,
makes it crucial for SA to develop water conservation strategies to minimize potable water
consumption by water-intensive industries, such as the poultry industry. The development of
innovative wastewater treatment processes is therefore paramount in attempting to
counteract the large quantity of wastewater generated as well as to manage the
environmental health concerns arising from poultry slaughterhouse wastewater (PSW)
discharge into the environment. Moreover, increasing wastewater treatment costs and the
implementation of increasingly stringent government legislation to mitigate environmental
pollution whilst minimizing fresh water source contamination, requires that wastewater such
as PSW, be adequately treated prior to discharge.
This study, investigated the feasibility of treating PSW from a poultry slaughterhouse to: 1) a
water quality standard compliant with industrial wastewater discharge standards and 2) for
possible re-use purposes. The performance of a lab-scale PSW treatment system consisting
of an anaerobic static granular bed reactor (SGBR) followed by single stage nitrificationdenitrification
(SSND) bioreactor and sidestream ultrafiltration membrane module (ufMM)
post-treatment systems, were evaluated, with the objective being to: assess the treatment
efficiency of the individual treatment systems namely; the SGBR, SSND bioreactor, and
ufMM, under varying operational conditions, as well as to determine the performance of the
overall designed PSW treatment system.
The down-flow SGBR (2 L) was used to reduce the organic matter (COD, BOD5, and FOG)
and total suspended solids (TSS) in the PSW. Anaerobic granules from a full-scale
mesophilic anaerobic reactor treating brewery wastewater were used to inoculate the SGBR,
and the PSW used as feed was obtained from a local poultry slaughterhouse (Western Cape,
South Africa). The SGBR was operated continuously at mesophilic temperature (35-37 °C)
without pH modification and under varying HRTs (24, 36, 48, 55, and 96 h) and OLRs (0.73
to 12.49 g COD/Lday), for a period of 138 days. The optimization of the SGBR, with regard to
a suitable HRT and OLR, was determined using response surface methodology (RSM) and
Design Expert® 10.0.3 statistical software. Periodic backwashing of the SGBR system was
performed using stored effluent, i.e. treated PSW.
|
34 |
Exploring the fertiliser potential of biosolids from algae integrated wastewater treatment systemsMlambo, Patricia Zanele January 2014 (has links)
High rate algae oxidation ponds (HRAOP) for domestic wastewater treatment generate biosolids that are predominantly microalgae. Consequently, HRAOP biosolids are enriched with minerals, amino acids, nutrients and possibly contain plant growth regulator (PGR)-like substances, which makes HRAOP biosolids attractive as fertiliser or PGR. This study investigated HRAOP biosolids as a starting material for a natural, cost-effective and readily-available eco-friendly organic fertiliser and/or PGRs. Various HRAOP extract formulations were prepared and their effect on plant growth and development was evaluated using selected bioassays. Initial screening included assessing the effect on change in specific leaf area, radish cotyledon expansion as an indicator of PGR-like activity, and seed germination index (GI). More detailed studies on fertiliser efficacy and PGR-like activity utilised bean (Phaseolus vulgaris) and tomato (Solanum lycopersicum) plants. Combined effects of sonicated (S) and 40% v/v methanol (M) extract (5:1 SM) had impressive plant responses, comparable to Hoagland solution (HS). Other potentially fertiliser formulations included 0.5% M, 1% M, 2.5% S and 5% S formulations. The 5:1 SM and 5% S showed greater PGR-like activity, promoting cotyledon expansion by 459 ± 0.02% and 362 ± 0.01%, respectively. GI data showed that none of the formulations negatively impacted germination. Further investigation showed that the 5% S formulation increased leaf length, width and area by 6.69 ± 0.24, 6.21 ± 0.2 mm and 41.55 ± 0.2 mm². All formulated fertiliser extracts had no adverse effect on chlorophyll content and plant nutrient balance as indicated by C:N (8-10:1) ratio. In addition, plants appeared to actively mobilise nutrients to regions where needed as evidenced by a shift in shoot: root ratio depending on C, N and water availability. Furthermore, 5% S caused a 75% increase in tomato productivity and had no effect on bean productivity. Whereas, 5:1 SM and 1% M formulation improved bean pod production by 33.3% and 11%, respectively but did not affect tomato production. Harvest index (HI) however indicated a 3% reduction in tomato productivity with 5:1 SM and little or no enhancement in bean productivity with both 5:1 SM and 5% S treatments. Bean plants treated with 5:1 SM and 5% S produced larger fruits, which could be an indication of the presence of a PGR effect. Overall, HRAOP biosolids extracts prepared and investigated in this study demonstrated both fertiliser characteristics and PGR-like activity with performances comparable and in some cases exceeding that of commercial products. However additional research is needed to confirm presence of PGR-like activities and fertiliser efficacy.
|
35 |
Economic feasibility of anaerobic digestion of swine manure for a grower-to-finisher hog operation in QuebecApushev, Nurlan January 2004 (has links)
No description available.
|
36 |
Parametric study and economic evaluation of a simulated biogas upgrading plant25 June 2015 (has links)
M. Tech. (Chemical Engineering) / The usual target of an upgrading process using membrane is to produce a retentate stream, the product, with high CH4 concentration. This work presents a simulation of two possible membrane configurations, single stage without recycle (SSWR) and double stage with permeate recycle (DSPR), of an existing operational biogas upgrading plant. The simulation was conducted using ChemCAD and AlmeeSoft gas permeation software to investigate the performance of the configurations on product purity, recovery and required compressor power with a view to determine the optimal operational conditions for maximising the concentration of CH4 and its recovery. Thereafter, an economic assessment on the optimal configuration was conducted to determine the gas processing cost (GPC), the profitability of producing biomethane and cost-benefit of utilising biomethane as a vehicular fuel. The simulation was validated against plant data with a maximum percentage error of 2.64%. Increasing CO2 in feed reduced product recovery and purity. Increasing feed pressure and selectivity increased product recovery and purity up to the pressure limit of the membrane module. Increasing feed flow rate increased product recovery but reduces purity. In both configurations, increasing CO2 in the feed and increasing feed pressure increased the GPC. However, increasing feed flow rate reduced the GPC. The overall performance of DSPR configuration was much higher due to increased trans-membrane area available for separation. At optimal conditions, a product purity of 91% and 96% CH4 recovery was achieved from the initial plant result of 87.2% product purity and 91.16% CH4 recovery. The total compression duty was 141 kW. The GPC was $0.46/m3 of biomethane. The cumulative discounted NPV, IRR and BCR for producing biomethane was R15,240,343, 22.41% and 2.05 respectively, with a break-even in the 5th year after plant start-up considering a prime lending rate at 9%. Using CBG instead of gasoline saves 34% of annual fuel cost with a payback period of one year and three months for the cost of retrofitting the vehicle.
|
37 |
Energy generating performance of domestic wastewater fed sandwich dual-chamber microbial fuel cells26 June 2015 (has links)
M.Tech. (Civil Engineering) / This study presents work on the design and construction of three dual-chamber microbial fuel cells (MFCs) using a sandwich separator electrode assembly (SSEA) and membrane cathode assembly (MCA) for the dual purposes of energy generation from domestic wastewater and wastewater treatment. MFC1 was designed using an improvised SSEA technique (i.e. a separator electrode membrane electrode configuration, SEMEC) by gluing a sandwich of anode, membrane and a mesh current collector cathode to an anode chamber made from a polyethylene wide-mouth bottle. The reactor was filled with 1500 mL of domestic wastewater and operated on a long fed-batch mode with a residence time of 3 weeks. The reactor was inoculated with a mixed culture of bacteria present in the wastewater stream. The aim was to study the impact of wastewater COD concentration on power generation and wastewater treatment efficiency. For MFC2 and MFC 3, cathodes were constructed using the MCA technique consisting of a membrane and a mesh current collector cathode, with the anode electrode at the opposite side of stacked Perspex sections used for the anode chamber. The impact of electrode material on current production was examined in this study. For MFC2 a mesh current collector treated with polytetrafluoroethylene (PTFE) and activated carbon (AC) functioned as the cathode, while the MFC3 cathode was an uncatalyzed mesh current collector. The two reactors were both filled with 350 mL of domestic wastewater...
|
38 |
Enhancement of the biodegradability of grain distillery wastewater to improve upflow anaerobic sludge blanket reactor efficiencyGie, Lowna-Marie 12 1900 (has links)
Thesis (Msc Food Sc (Food Science))--University of Stellenbosch, 2007. / The distillery industry generates large volumes of heavily polluted wastewater and thus
effective wastewater treatment is essential. It has been reported that a chemical oxygen
demand (COD) reduction of more than 90% can be achieved when wine distillery wastewater
(WDWW) is treated in an upflow anaerobic sludge blanket (UASB) reactor. The first objective
of this study was to investigate UASB treatment of WDWW and to try to enhance the
efficiency by using ozonation treatments. Secondly, the impact of grain distillery wastewater
(GDWW) on UASB granules was determined. The third objective was to determine whether
ozonation and enzymatic treatment combinations might improve the biodegradability of
GDWW and thus make GDWW more amenable to UASB treatment.
It was found that UASB treatment combined with ozonation improved the WDWW
treatment efficiency. When diluted WDWW (chemical oxygen demand COD = 4 000 mg.L-1)
was ozonated (dose = 47 mg.L-1) in a 50 L venturi circulating contactor system, the COD
reduction was 7%. When WDWW was treated in a laboratory-scale UASB reactor (substrate
pH = 7.0, COD = 4 000 mg.L-1 and organic loading rate (OLR) = 4.0 kg COD.m-3.d-1), the
COD reduction was 92%. When the UASB treatment was combined with either pre- or postozonation,
the COD reduction was 94 and 96%, respectively. When UASB treatment was
combined with pre- and post-ozonation, a COD reduction of 98% was achieved. The activity
of the UASB granules was also found to improve over time, despite the addition of the
ozonation treatment.
It has been reported that operational problems occur when GDWW is treated in an
UASB reactor as a result of the encapsulation of the granules. This was confirmed when
granules from a full-scale UASB treating WDWW became encapsulated in a layer after being
exposed to GDWW (COD = 4 000 mg.L-1) for 24 d. The results showed that the lipid content
of the granules increased from 1.25 to 60.35 mg lipid.g-1 granule over the 24 d exposure
period. Therefore, granules exposed to GDWW were encapsulated in a lipid-rich layer and as
a result the contact between the GDWW and microbial consortium in the granules was
reduced. The operational problems found during the industrial UASB treatment of GDWW
were ascribed to the encapsulation of the granules.
Combinations of ozonation (dose = 1 476 mg.L-1) generated in a 2 L bubble column
and enzymatic treatments (1% FogFreeTM (FF) dosage and 2 d incubation at 35°C) were found to improve the biodegradability of GDWW. This improvement was in terms of lipid
reduction in GDWW, granule activity and visual appearance of the encapsulating layer of the
granules. The highest lipid reduction (90%), highest granule activity, lowest lipid content of
the granules (3.74 ± 0.10 mg.g-1 granule) and best visual appearance were achieved in
ozonated GDWW treated with 1% FF, followed by just ozonation. The higher lipid reduction
and subsequent higher granule activity were ascribed to the reduction in lipids which resulted
in the fact that fewer lipids were available to encapsulate the granules. As a result of the lipid
reduction, the granule activity improved and the GDWW was made more amenable to UASB
treatment.
This study proved that UASB treatment combined with ozonation led to an
enhancement of the treatment efficiency of WDWW. It was also found that the cause of the
operational problems during UASB treatment of GDWW was as a result of the granules being
encapsulated in a lipid-rich layer. It was established that treating GDWW prior to UASB
treatment improved the biodegradability of GDWW. The data from the study showed that
high lipid reduction in the GDWW directly led to better granule activity, lower granule lipid
content and a thinner encapsulating layer. Based on the data from this study, it is
recommended that GDWW be ozonated prior to other treatments because it can be done inline
and the costs would be lower than that of enzymatic treatments.
|
39 |
Post-treatment technologies for integrated algal pond systemsWestensee, Dirk Karl January 2015 (has links)
Integrated Algae Pond Systems (IAPS) are a derivation of the Oswald designed Algal Integrated Wastewater Pond Systems (AIWPS®) and combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. IAPS technology was introduced to South Africa in 1996 and a pilot plant designed and commissioned at the Belmont Valley WWTW in Grahamstown. The system has been in continual use since implementation and affords a secondarily treated water for reclamation according to its design specifications which most closely resemble those of the AIWPS® Advanced Secondary Process developed by Oswald. As a consequence, and as might be expected, while the technology performed well and delivered a final effluent superior to most pond systems deployed in South Africa it was unable to meet The Department of Water Affairs General Standard for nutrient removal and effluent discharge. The work described in this thesis involved the design, construction, and evaluation of several tertiary treatment units (TTU') for incorporation into the IAPS process design. Included were; Maturation Ponds (MP), Slow Sand Filter (SSF) and Rock Filters (RF). Three MP's were constructed in series with a 12 day retention time and operated in parallel with a two-layered SSF and a three-stage RF. Water quality of the effluent emerging from each of these TTU's was monitored over a 10 month period. Significant decreases in the chemical oxygen demand (COD), ammonium-N, phosphate-P, nitrate-N, faecal coliforms (FC) and total coliforms (TC) were achieved by these TTU's. On average, throughout the testing period, water quality was within the statutory limit for discharge to a water course that is not a listed water course, with the exception of the total suspended solids (TSS). The RF was determined as the most suitable TTU for commercial use due to production of a better quality water, smaller footprint, lower construction costs and less maintenance required. From the results of this investigation it is concluded that commercial deployment of IAPS for the treatment of municipal sewage requires the inclusion of a suitable TTU. Furthermore, and based on the findings presented, RF appears most appropriate to ensure that quality of the final effluent meets the standard for discharge.
|
40 |
Integration of anaerobic biological and advanced chemical oxidation processes to facilitate biodegradation of fruit canning and winery wastewatersSigge, G. O. (Gunnar Oliver) 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2005. / ENGLISH ABSTRACT:
Please see fulltext for abstract / AFRIKAANSE OPSOMMING:
Sien asb volteks vir opsomming
|
Page generated in 0.105 seconds