Spelling suggestions: "subject:"shadow voire"" "subject:"shadow noire""
1 |
The Study of the Moisture Effect on the Warpage of IC Packages in the IR-Reflow ProcessHung, Chien-Hsiung 28 August 2000 (has links)
Abstract¡G
The main aim of this paper is to utilizing the Shadow Moirè method to study the moisture effect on the warpage of PBGA IC package under the IR-reflow process.
An environmental controlled box is designed and built. Three combinations of different moisture and temperature status are chosen for the purpose of study. The result shows that the moisture and temperature change do yielding the change of the warpage of the IC package.
|
2 |
Experimental and theoretical assessment of thin glass panels as interposers for microelectronic packagesMcCann, Scott R. 22 May 2014 (has links)
As the microelectronic industry moves toward stacking of dies to achieve greater performance and smaller footprint, there are several reliability concerns when assembling the stacked dies on current organic substrates. These concerns include excessive warpage, interconnect cracking, die cracking, and others. Silicon interposers are being developed to assemble the stacked dies, and then the silicon interposers are assembled on organic substrates. Although such an approach could address stacked-die to interposer reliability concerns, there are still reliability concerns between the silicon interposer and the organic substrate. This work examines the use of diced glass panel as an interposer, as glass provides intermediate coefficient of thermal expansion between silicon and organics, good mechanical rigidity, large-area panel processing for low cost, planarity, and better electrical properties. However, glass is brittle and low in thermal conductivity, and there is very little work in existing literature to examine glass as a potential interposer material. Starting with a 150 x 150 mm glass panel with a thickness of 100 µm, this work has built alternating layers of dielectric and copper on both sides of the panel. The panels have gone through typical cleanroom processes such as lithography, electroplating, etc. Upon fabrication, the panels are diced into individual substrates of 25 x 25 mm and a 10 x 10 mm flip chip with a solder bump pitch of 75 um is then reflow attached to the glass substrate followed by underfill dispensing and curing. The warpage of the flip-chip assembly is measured. In parallel to the experiments, numerical models have been developed. These models account for viscoplastic behavior of the solder. The models also mimic material addition and etching through element “birth-and-death” approach. The warpage from the models has been compared against experimental measurements for glass substrates with flip chip assembly. It is seen that the glass substrates provide significantly lower warpage compared to organic substrates, and thus could be a potential candidate for future 3D systems.
|
Page generated in 0.0297 seconds