• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insights into the Challenges of Modeling the Atmospheric Boundary Layer

Tastula, Esa-Matti 16 September 2015 (has links)
This work approaches the topic of modeling the atmospheric boundary layer in four research projects, which are summarized below. i) The diurnal cycles of near-surface meteorological parameters over Antarctic sea ice in six widely used atmospheric reanalyses were validated against observations from Ice Station Weddell. The station drifted from February through May 1992 and provided the most extensive set of meteorological observations ever collected in the Antarctic sea ice zone. For the radiative and turbulent surface fluxes, both the amplitude and shape of the diurnal cycles varied considerably among different reanalyses. Near-surface temperature, specific humidity, and wind speed in the reanalyses all featured small diurnal ranges, which, in most cases, fell within the uncertainties of the observed cycle. A skill score approach revealed the superiority of the ERA-Interim reanalysis in reproducing the observed diurnal cycles. An explanation for the shortcomings in the reanalyses is their failure to capture the diurnal cycle in cloud cover fraction, which leads to errors in other quantities as well. Apart from the diurnal cycles, NCEP-CFSR gave the best error statistics. ii) The accuracy of prediction of stable atmospheric boundary layers depends on the parameterization of the surface layer which is usually derived from the Monin-Obukhov similarity theory. In this study, several surface-layer models in the format of velocity and potential temperature Deacon numbers were compared to observations from CASES-99, Cardington, and Halley datasets. The comparisons were hindered by a large amount of scatter within and among datasets. Tests utilizing R2 demonstrated that the Quasi-Normal Scale Elimination (QNSE) theory exhibits the best overall performance. Further proof of this was provided by 1D simulations with the Weather Research and Forecasting (WRF) model. iii) The increasing number of physics parameterization schemes adopted in numerical weather forecasting models has resulted in a proliferation of inter-comparison studies in recent years. Many of these studies concentrated on determining which parameterization yields results closest to observations rather than analyzing the reasons underlying the differences. In this work, the performance of two 1.5-order boundary layer parameterizations was studied, the QNSE and Mellor-Yamada-Janjić (MYJ) schemes, in the Weather Research and Forecasting (WRF) model. The objectives were to isolate the effect of stability functions on the near-surface values and vertical profiles of virtual temperature, mixing ratio and wind speed. The results demonstrate that the QNSE stability functions yield better error statistics for 2-m virtual temperature but higher up the errors related to QNSE are slightly larger for virtual temperature and mixing ratio. A surprising finding is the sensitivity of the model results to the choice of the turbulent Prandtl number for neutral stratification (Prt0): in the Monin-Obukhov similarity function for heat, the choice of Prt0 is sometimes more important than the functional form of the similarity function itself. There is a stability-related dependence to this sensitivity: with increasing near-surface stability, the relative importance of the functional form increases. In near-neutral conditions, QNSE exhibits too strong vertical mixing attributed to the applied turbulent kinetic energy subroutine and the stability functions including the effect of Prt0. iv) In recent years, many eddy-diffusivity mass flux (EDMF) planetary boundary layer (PBL) parameterizations have been introduced. Yet, most validations are based on idealized setups and/or single column models. To address this gap, this study focused on the effect the mass flux part has on the performance in the QNSE-EDMF PBL scheme in the WRF model by comparing the results to observations from the CASES-97 field campaign. In addition, two refined versions, one introducing the parameterized clouds to the WRF radiation scheme, and the second adding a different entrainment formulation, were evaluated. The introduction of mass flux reduced errors in the average moisture profile but virtual temperature and wind speed profiles did not change as much. The turbulent flux profiles for modeled virtual potential temperature were little affected, with consistent reasonable agreement with observations, if one allows for biases in the observed data and modeled surface fluxes. However, the water vapor flux divergences from QNSE tend to be more negative than observed, while including the mass flux part tends to make the divergences more positive, the latter at least partially due to deeper model PBLs resulting from excessive model surface virtual temperature fluxes. Further, both virtual potential temperature and water vapor flux profiles display spurious spikes attributed to the way the non-local and local terms interact in the model. The influence of the mass flux schemes extends to 60 – 100-km scale circulation features, which were greatly modified by both the inclusion of mass flux and the new entrainment formulation. Adding mass flux based clouds to the radiation calculation improved the time and space averaged modeled incoming shortwave flux. The choice of the representation for entrainment/detrainment often affected the results to the same extent as adding mass flux did.
2

Numerical Modelling of Convective Snow Bands in the Baltic Sea Area

Jeworrek, Julia January 2016 (has links)
Convective snow bands develop commonly over the open water surface of lakes or seas when cold airgets advected from a continent. Enhanced heat and moisture fluxes from the comparatively warm waterbody trigger shallow convection and an unstable boundary layer builds up. Relatively strong wind canorganize this convection into wind-parallel quasi-stationary cloud bands with moving individual cells.Depending on various factors like the horizontal wind, the vertical shear or the shape of the coast, thosecloud bands can form of different strength and structure. When the air mass meets the coast orographicforcing causes horizontal convergence and vertical lifting intensifies the precipitation at the coast. If thewind direction stays constant for several days a single snow band would accumulate its precipitation ina very restricted region and cause locally a significant increase in snow depth. This process leads in thecold season repeatedly to severe precipitation events at the Swedish east coast. Large amounts of snowalong with strong wind speeds can cause serious problems for traffic and infrastructure.Two different cases of convective snow bands in the Baltic Sea area were selected to simulate theassociated atmospheric conditions with a total of five different model systems. The atmosphere climatemodel RCA has been used independently at default settings as well as with increased resolution on avertical and a horizontal scale and furthermore coupled either to the ice-ocean model NEMO or the wavemodel component WAM.Comparing all models the crucial parameters like wind, temperature, heat fluxes, and precipitationvary generally in a reasonable range. However, the model systems show systematical differences amongthemselves. The strongest 10 meter wind speeds can be observed for both RCA models with increasedresolution. The RCA-WAM simulation shows its wind enhancement during the snow band event witha time shift to the other models by several hours. The mean directional wind shear above the Gulf ofBothnia, the snow band’s region of origin, is for all models small. The warmest sea surface temperaturesare reached by the RCA-NEMO simulation, which as a result also stands out for its most intense heatfluxes in both sensible and latent heat. Both high resolution RCA models as well as RCA-NEMO givethe most remarkable local precipitation rates. The original RCA and RCA-WAM simulate significantlyless snowfall. Local comparison with SMHI station measurements show that the models represent thetrend of wind, temperature and precipitation evolution well. However, all models decelerate the air masstoo rapidly when meeting the coast. Moreover, it remains a challenge to simulate the exact time andlocation of the extreme precipitation.The coupling of the atmosphere model with the ice-ocean model as well as the increased resolution ofthe atmospheric component have been observed to show great improvements in the model performanceand are suggested for future research work to be used in combination with each other for the regionalmodelling of convective snow bands in the Baltic Sea area.
3

Modélisation du transport d'espèces chimiques en période convective pour l'étude de la haute troposphère tropicale en Amérique du Sud / Modelisation of transport of chemical species during convective period for the study of the chemical composition of the tropical troposphere over South America

Henriot, Jean-Michel 20 March 2009 (has links)
De nombreux travaux indiquent qu’il est important d’étudier les impacts physico-chimiques de la convection profonde tropicale. Nous avons utilisé le modèle méso-échelle 3D non-hydrostatique CATT-BRAMS pour étudier le transport de traceurs dans la troposphère tropicale au-dessus de l’Amérique du Sud. J’ai effectué une validation de l’outil en complément d’une étude en saison sèche et dans les basses couches menée au CPTEC (Brésil). Les résultats obtenus dans ces travaux indiquent un comportement météorologique globalement correct. Le transport en résultant montre une sur-estimation du transport d’espèces chimiques dans la moyenne troposphère et une sous-estimation dans la haute troposphère. Cela vient d’un déclenchement trop fréquent de la convection restreinte, de la paramétrisation de la convection profonde et de la représentation de leurs interactions. Une adaptation du modèle pour la saison humide est nécessaire. A l’échelle locale des difficultés venant d’une sensibilité importante de la paramétrisation au relief sont rencontrées. Le CATT-BRAMS évolue vers un modèle avec chimie, le C-CATT-BRAMS. Les premiers résultats obtenus indiquent un fort impact de l’initialisation et des conditions aux limites pour les espèces NO et O3. Quelques soient l’initialisation ou les conditions aux limites utilisées, on observe une augmentation du rapport de mélange de ces espèces au cours du temps. Cela peut provenir d’une sur-estimation des émissions `a la surface dans le modèle, en particulier pour les méga-cités. Il est important de poursuivre la validation de cet outil afin de pouvoir étudier l’impact physico-chimique de la convection profonde tropicale avec ce modèle. / Many works show it is important to study the phyical and chemical impacts of tropical deep convection. We used the 3D mesoscale non-hydrostatic model CATT-BRAMS to study the tracers transport in the tropical troposphere above South America. I validated the tool parallel to a study done in CPTEC (Brazil) for the dry season and in the lower troposphere. The results obtained in this work indicate a globaly correct meteorological behaviour. The associated transport show an over estimation of the chemical species transport in mid-troposphere and an under estimation in the upper troposphere.This comes from a to frequent triggering of shallow convection, from the deep convection scheme and from the representation of their interactions. An adaptation of the model for the wet season is necessary. At local scale, difficulties because of a high deep convection scheme sensitivity to the orography are encountered. The CATT-BRAMS model evolve to a model with chemistry, the C-CATT-BRAMS. The first results obtained indicate a strong impact of initialisation and boudary conditions on species NO and O3. Whatever be the initialisation or the boundary conditions, we observe an increase of the mixing ratio along time for these species. This can come from an over estimation of surface emissions in the model, especialy for megacities. It is important to continue the validation of this tool in order to be able to study the physical and chemical impacts of tropical deep convection with this model.

Page generated in 0.1049 seconds