1 |
Développement d'un procédé innovant pour le remplissage des tranchées d'isolation entre transistors des technologies CMOS avancées / Developpement of an innovative process for shallow trench isolation gap-filling of advanced CMOS technology nodesTavernier, Aurélien 10 February 2014 (has links)
Réalisées au début du processus de fabrication des circuits intégrés, les tranchées d'isolation permettent d'éviter les fuites de courant latérales qui pourraient avoir lieu entre les transistors. Les tranchées sont remplies par un film d'oxyde de silicium réalisé par des procédés de dépôt chimiques en phase vapeur (aussi appelés CVD). Le remplissage des tranchées est couramment réalisé par un procédé CVD à pression sub-atmosphérique (SACVD TEOS/O3). Cependant, la capacité de remplissage de ce procédé pour les nœuds technologiques CMOS 28 nm et inférieurs est dégradée à cause de profils trop verticaux dans les tranchées. Cela induit la formation de cavités dans l'oxyde et entraine des courts-circuits. Afin de pallier ce problème, une nouvelle stratégie de remplissage en trois étapes est proposée pour la technologie CMOS 14 nm. Dans la première étape, un film mince d'oxyde est déposé dans les tranchées. Puis, dans la deuxième étape, les flancs du film sont gravés à l'aide d'un procédé de gravure innovant, basé sur un plasma délocalisé de NF3/NH3, permettant de créer une pente favorable au remplissage final réalisé au cours de la troisième étape. Le développement de cette nouvelle stratégie de remplissage s'est déroulé selon plusieurs axes. Tout d'abord, le procédé de dépôt a été caractérisé afin de sélectionner les conditions optimales pour la première étape de la stratégie. Puis, le procédé de gravure innovant a été caractérisé en détail. L'influence des paramètres de gravure a été étudiée sur pleine plaque et sur plaques avec motifs afin de comprendre les mécanismes de gravure et de changement de pente dans les tranchées. Enfin, dans un troisième temps, la stratégie de remplissage a été développée et intégrée pour la technologie CMOS 14 nm. Nous montrons ainsi qu'il est possible de contrôler le changement de pente avec les conditions de gravure et que cette stratégie permet un remplissage des tranchées d'isolation sans cavités. / Achieved at the beginning of the integrated circuits manufacturing, shallow trench isolation permits to electrically isolate transistors from each other's to avoid current leakage. Trenches are filled with silicon dioxide film deposited by chemical vapor deposition (also called CVD). Trenches gap-filling is usually performed by TEOS/O3 Sub-Atmospheric Chemical Vapor Deposition (TEOS/O3 SACVD). However, trenches gap-filling with SACVD process reveals some limitations for advanced technology nodes (mainly 28 nm & 14 nm) due to quasi-vertical trenches profile and slope sensitivity of SACVD, which can lead to voids formation in gap-filling oxide and consequently to electrical isolation failure. To solve this issue, a new three steps gap-fill strategy is proposed for the CMOS 14 nm technology node. During the first step, a thin oxide liner is deposited into trenches. Then, in the second step, film sidewalls are etched with an innovative process, based on downstream plasma of NF3/NH3, to create tapered profile favorable for final SACVD gap-fill achieved in the third step. The development of this strategy has followed three work leads. First, the deposition process has been characterized to select best conditions for the first step. Then, the innovative etching process has been widely characterized. The influence of etching parameters has been studied on blanket and patterned wafers to understand etching mechanisms and slope modification. Finally, the gap-fill strategy has been developed and integrated for the CMOS 14 nm technology node. We demonstrate that it is possible to control the slope modification by tuning etching conditions and that strategy allows a void-free trenches filling.
|
2 |
Chemical Mechanical Polishing of Silicon and Silicon Dioxide in Front End ProcessingForsberg, Markus January 2004 (has links)
Chemical mechanical polishing (CMP) has been used for a long time in the manufacturing of prime silicon wafers for the IC industry. Lately, other substrates, such as silicon-on-insulator has become in use which requires a greater control of the silicon CMP process. CMP is used to planarize oxide interlevel dielectric and to remove excessive tungsten after plug filling in the Al interconnection technology. In Cu interconnection technology, the plugs and wiring are filled in one step and excessive Cu is removed by CMP. In front end processing, CMP is used to realize shallow trench isolation (STI), to planarize trench capacitors in dynamic random access memories (DRAM) and in novel gate concepts. This thesis is focused on CMP for front end processing, which is the processing on the device level and the starting material. The effects of dopants, crystal orientation and process parameters on silicon removal rate are investigated. CMP and silicon wafer bonding is investigated. Also, plasma assisted wafer bonding to form InP MOS structures is investigated. A complexity of using STI in bipolar and BiCMOS processes is the integration of STI with deep trench isolation (DTI). A process module to realize STI/DTI, which introduces a poly CMP step to planarize the deep trench filling, is presented. Another investigated front end application is to remove the overgrowth in selectively epitaxially grown collector for a SiGe heterojunction bipolar transistor. CMP is also investigated for rounding, which could be beneficial for stress reduction or to create microoptical devices, using a pad softer than pads used for planarization. An issue in CMP for planarization is glazing of the pad, which results in a decrease in removal rate. To retain a stable removal rate, the pad needs to be conditioned. This thesis introduces a geometrically defined abrasive surface for pad conditioning.
|
3 |
Mémoires embarquées non volatiles à grille flottante : challenges technologiques et physiques pour l’augmentation des performances vers le noeud 28nm / Embedded Non-volatile 1T floating-gate memories : technological and physical challenges for augmenting performance towards the 28 nm nodeDobri, Adam 13 July 2017 (has links)
Les mémoires flash sont intégrées dans presque tous les aspects de la vie moderne car leurs uns et zéros représentent les données stockées sur les cartes à puce et dans les capteurs qui nous entourent. Dans les mémoires flash à grille flottante ces données sont représentées par la quantité de charge stockée sur une grille en poly-Si, isolée par un oxyde tunnel et un diélectrique entre grilles (IGD). Au fur et à mesure que les chercheurs et les ingénieurs de l'industrie microélectronique poussent continuellement les limites de mise à l'échelle, la capacité des dispositifs à contenir leurs informations risque de devenir compromise. Même la perte d'un électron par jour est trop élevée et entraînerait l'absence de conservation des données pendant dix ans. Étant trop faibles, les courants de fuite sont impossible à mesurer directement. Cette thèse présente une nouvelle méthode, la séparation du stress aux oxydes (OSS), pour mesurer ces courants en suivant les changements de la tension de seuil de la cellule flash. La nouveauté de la technique est que les conditions de polarisation sont sélectionnées afin que le stress se produise entièrement dans l'IGD, permettant la reconstruction d'une courbe IV de l'IGD à des tensions faibles. Cette thèse décrit également les changements de processus nécessaires pour intégrer la première mémoire flash embarquée de 40 nm basée sur un IGD d'alumine, en remplacement du SiO2/ Si3N4/SiO2 standard. L'intérêt pour les matériaux high-k vient de la motivation de créer un IGD qui est électriquement mince pour augmenter le couplage tout en étant physiquement épais pour bloquer le transport de charge. Comme la flash intégrée au noeud de 40 nm se rapproche de la production, l'approche à prendre dans les nœuds futurs doit également être discutée. Cela fournit la motivation pour le chapitre final de la thèse qui traite de la co-intégration des différents IGD avec des dispositifs logiques ayant les gilles « high-k metal » nécessaires à 28 nm et au-delà. / Flash memory circuits are embedded in almost every aspect of modern life as their ones and zeros represent the data that is stored on smart cards and in the sensors around us. In floating gate flash memories this data is represented by the amount of charge stored on a poly-Si gate, isolated by a tunneling oxide and an Inter Gate Dielectric (IGD). As the microelectronics industry’s researchers and engineering continuously push the scaling limits, the ability of the devices to hold their information may become compromised. Even the loss of one electron per day is too much and would result in the failure to retain the data for ten years. At such low current densities, the direct measurement of the leakage current is impossible. This thesis presents a new way, Oxide Stress Separation, to measure these currents by following the changes in the threshold voltage of the flash cell. The novelty of the technique is that the biasing conditions are selected such that the stress occurs entirely in the IGD, allowing for the reconstruction of an IV curve of the IGD at low biases. This thesis also describes the process changes necessary to integrate the world’s first 40 nm embedded flash based on an alumina IGD, in replacement of the standard SiO2/Si3N4/SiO2. The interest in high-k materials comes from the motivation to make an IGD that is electrically thin to increase coupling while being physically thick to block charge transport. As embedded flash at the 40 nm node nears production, the approach to be taken in future nodes must also be discussed. This provides the motivation for the final chapter of the thesis which discusses the co-integration of the different IGDs with logic devices having the high-k metal gates necessary at 28 nm and beyond.
|
Page generated in 0.1033 seconds