1 |
A Computational Study of American Sign Language NonmanualsBenitez-Quiroz, Carlos Fabian 13 October 2015 (has links)
No description available.
|
2 |
Computational Methods for the Study of Face PerceptionRivera, Samuel 19 December 2012 (has links)
No description available.
|
3 |
Average Cell Orientation, Eccentricity and Size Estimated from Tissue ImagesIles, Peter January 2005 (has links)
Five image processing algorithms are proposed to measure the average orientation, eccentricity and size of cells in images of biological tissue. These properties, which can be embodied by an elliptical 'composite cell', are crucial for biomechanical tissue models. To automatically determine these properties is challenging due to the diverse nature of the image data, with tremendous and unpredictable variability in illumination, cell pigmentation, cell shape and cell boundary visibility. One proposed algorithm estimates the composite cell properties directly from the input tissue image, while four others estimate the properties from frequency domain data. The accuracy and stability of the algorithms are quantitatively compared through application to a wide variety of real images. Based on these results, the best algorithm is selected.
|
4 |
Average Cell Orientation, Eccentricity and Size Estimated from Tissue ImagesIles, Peter January 2005 (has links)
Five image processing algorithms are proposed to measure the average orientation, eccentricity and size of cells in images of biological tissue. These properties, which can be embodied by an elliptical 'composite cell', are crucial for biomechanical tissue models. To automatically determine these properties is challenging due to the diverse nature of the image data, with tremendous and unpredictable variability in illumination, cell pigmentation, cell shape and cell boundary visibility. One proposed algorithm estimates the composite cell properties directly from the input tissue image, while four others estimate the properties from frequency domain data. The accuracy and stability of the algorithms are quantitatively compared through application to a wide variety of real images. Based on these results, the best algorithm is selected.
|
5 |
Modélisation géométrique de scènes intérieures à partir de nuage de points / Geometric modeling of indoor scenes from acquired point dataOesau, Sven 24 June 2015 (has links)
La modélisation géométrique et la sémantisation de scènes intérieures à partir d'échantillon de points et un sujet de recherche qui prend de plus en plus d'importance. Cependant, le traitement d'un ensemble volumineux de données est rendu difficile d'une part par le nombre élevé d'objets parasitant la scène et d'autre part par divers défauts d'acquisitions comme par exemple des données manquantes ou un échantillonnage de la scène non isotrope. Cette thèse s'intéresse de près à de nouvelles méthodes permettant de modéliser géométriquement un nuage de point non structuré et d’y donner de la sémantique. Dans le chapitre 2, nous présentons deux méthodes permettant de transformer le nuage de points en un ensemble de formes. Nous proposons en premier lieu une méthode d'extraction de lignes qui détecte des segments à partir d'une coupe horizontale du nuage de point initiale. Puis nous introduisons une méthode par croissance de régions qui détecte et renforce progressivement des régularités parmi les formes planaires. Dans la première partie du chapitre 3, nous proposons une méthode basée sur de l'analyse statistique afin de séparer de la structure de la scène les objets la parasitant. Dans la seconde partie, nous présentons une méthode d'apprentissage supervisé permettant de classifier des objets en fonction d'un ensemble de formes planaires. Nous introduisons dans le chapitre 4 une méthode permettant de modéliser géométriquement le volume d'une pièce (sans meubles). Une formulation énergétique est utilisée afin de labelliser les régions d’une partition générée à partir de formes élémentaires comme étant intérieur ou extérieur de manière robuste au bruit et aux données. / Geometric modeling and semantization of indoor scenes from sampled point data is an emerging research topic. Recent advances in acquisition technologies provide highly accurate laser scanners and low-cost handheld RGB-D cameras for real-time acquisition. However, the processing of large data sets is hampered by high amounts of clutter and various defects such as missing data, outliers and anisotropic sampling. This thesis investigates three novel methods for efficient geometric modeling and semantization from unstructured point data: Shape detection, classification and geometric modeling. Chapter 2 introduces two methods for abstracting the input point data with primitive shapes. First, we propose a line extraction method to detect wall segments from a horizontal cross-section of the input point cloud. Second, we introduce a region growing method that progressively detects and reinforces regularities of planar shapes. This method utilizes regularities common to man-made architecture, i.e. coplanarity, parallelism and orthogonality, to reduce complexity and improve data fitting in defect-laden data. Chapter 3 introduces a method based on statistical analysis for separating clutter from structure. We also contribute a supervised machine learning method for object classification based on sets of planar shapes. Chapter 4 introduces a method for 3D geometric modeling of indoor scenes. We first partition the space using primitive shapes detected from permanent structures. An energy formulation is then used to solve an inside/outside labeling of a space partitioning, the latter providing robustness to missing data and outliers.
|
6 |
Modélisation géométrique à différent niveau de détails d'objets fabriqués par l'homme / Geometric modeling of man-made objects at different level of detailsFang, Hao 16 January 2019 (has links)
La modélisation géométrique d'objets fabriqués par l'homme à partir de données 3D est l'un des plus grands défis de la vision par ordinateur et de l'infographie. L'objectif à long terme est de générer des modèles de type CAO de la manière la plus automatique possible. Pour atteindre cet objectif, des problèmes difficiles doivent être résolus, notamment (i) le passage à l'échelle du processus de modélisation sur des données d'entrée massives, (ii) la robustesse de la méthodologie contre des mesures d'entrées erronés, et (iii) la qualité géométrique des modèles de sortie. Les méthodes existantes fonctionnent efficacement pour reconstruire la surface des objets de forme libre. Cependant, dans le cas d'objets fabriqués par l'homme, il est difficile d'obtenir des résultats dont la qualité approche celle des représentations hautement structurées, comme les modèles CAO. Dans cette thèse, nous présentons une série de contributions dans ce domaine. Tout d'abord, nous proposons une méthode de classification basée sur l'apprentissage en profondeur pour distinguer des objets dans des environnements complexes à partir de nuages de points 3D. Deuxièmement, nous proposons un algorithme pour détecter des primitives planaires dans des données 3D à différents niveaux d'abstraction. Enfin, nous proposons un mécanisme pour assembler des primitives planaires en maillages polygonaux compacts. Ces contributions sont complémentaires et peuvent être utilisées de manière séquentielle pour reconstruire des modèles de ville à différents niveaux de détail à partir de données 3D aéroportées. Nous illustrons la robustesse, le passage à l'échelle et l'efficacité de nos méthodes sur des données laser et multi-vues stéréo sur des scènes composées d'objets fabriqués par l'homme. / Geometric modeling of man-made objects from 3D data is one of the biggest challenges in Computer Vision and Computer Graphics. The long term goal is to generate a CAD-style model in an as-automatic-as-possible way. To achieve this goal, difficult issues have to be addressed including (i) the scalability of the modeling process with respect to massive input data, (ii) the robustness of the methodology to various defect-laden input measurements, and (iii) the geometric quality of output models. Existing methods work well to recover the surface of free-form objects. However, in case of manmade objects, it is difficult to produce results that approach the quality of high-structured representations as CAD models.In this thesis, we present a series of contributions to the field. First, we propose a classification method based on deep learning to distinguish objects from raw 3D point cloud. Second, we propose an algorithm to detect planar primitives in 3D data at different level of abstraction. Finally, we propose a mechanism to assemble planar primitives into compact polygonal meshes. These contributions are complementary and can be used sequentially to reconstruct city models at various level-of-details from airborne 3D data. We illustrate the robustness, scalability and efficiency of our methods on both laser and multi-view stereo data composed of man-made objects.
|
7 |
Automated Hybrid Singularity Superposition And Anchored Grid Pattern Bem Algorithm For The Solution Of The Inverse Geometric ProblemNi, Marcus 01 January 2013 (has links)
A method for solving the inverse geometrical problem is presented by reconstructing the unknown subsurface cavity geometry using boundary element methods, a genetic algorithm, and Nelder-Mead non-linear simplex optimization. The heat conduction problem is solved utilizing the boundary element method, which calculates the difference between the measured temperature at the exposed surface and the computed temperature under the current update of the unknown subsurface flaws and cavities. In a first step, clusters of singularities are utilized to solve the inverse problem and to identify the location of the centroid(s) of the subsurface cavity(ies)/flaw(s). In a second step, the reconstruction of the estimated cavity(ies)/flaw(s) geometry(ies) is accomplished by utilizing an anchored grid pattern upon which cubic spline knots are restricted to move in the search for unknown geometry. Solution of the inverse problem is achieved using a genetic algorithm accelerated with the Nelder-Mead non-linear simplex. To optimize the cubic spline interpolated geometry, the flux (Neumann) boundary conditions are minimized using a least squares functional. The automated algorithm successfully reconstructs single and multiple subsurface cavities within two dimensional mediums. The solver is also shown to accurately predict cavity geometries with random noise in the boundary condition measurements. Subsurface cavities can be difficult to detect based on their location. By applying different boundary conditions to the same geometry, more information is supplied at the boundary, and the subsurface cavity is easily detected despite its low heat signature effect at the boundaries. Extensions to three-dimensional applications are outlined
|
8 |
Detekce a rozpoznávání dopravních značek / Traffic Signs Detection and RecognitionČíp, Pavel January 2009 (has links)
The thesis deals with traffic sign detection and recongnition in the urban environment and outside the town. A precondition for implementation of the system is built-in camera, usually in a car rear-view mirror. The camera scans the scene before the vehicle. The image data are transfered to the connected PC, where the data are transformation to information and evalutations. If the sign was detected the system is visually warned the driver. For a successful goal is divided into four separate blocks. The first part is the preparing of the image data. There are color segmentation with knowledge of color combination traffic signs in Czech Republic. Second part is deals with shape detection in segmentation image. Part number three is deals with recognition of inner pictogram and its finding in the image database. The final part is the visual output of displaying founded traffic signs. The thesis has been prepader so as to ensure detection of all relevant traffic signs in three basic color combinations according to existing by Decree of Ministry of Transport of Czech Republic. The result is the source code for the program MATLAB. .
|
9 |
Metoda fyzikálního modelování přechodových hran v obraze pro určení skutečné pozice obrysu předmětu / Image Transition Edge Physical Modeling Method for Exact Object Shape Position DeterminationKohoutek, Michal January 2009 (has links)
Doctoral thesis is focused on a design of a new original image transition edge physical modeling method for exact object shape position determination. Automatic Optical Inspection systems for the high accuracy optical measurements is main application area for designed method. The new method design is based on precise physical analysis of a defined imaging system. Object side telecentric lens, telecentric backlight source and CCD video camera are main parts of the analyzed imaging system. New image transition edge physical model and method for accurate shape position detection within the model are derived by geometrical and Fourier optics imaging system analysis. Possible influences of the model parameters changes to the accuracy of shape position detection are studied precisely. A new modeling function suitable for implementation in a new optimal approximation method is derived from the physical transition edge model. The modeling function optimal approximation method is implemented in to a Tester2D measuring system and verified by length etalon measurements. The Tester2D measuring system was successfully accredited for dimensions measurement in range with accuracy up to . Documentation of results of the accreditation process with the record of obtained results from measurement system in scope of preformed interlaboratory comparison tests are appended to the doctoral thesis.
|
10 |
Rozpoznávání obrazů pro ovládání robotické ruky / Image recognition for robotic handLabudová, Kristýna January 2017 (has links)
This thesis concerns with processing of embedded terminals’ images and their classification. There is problematics of moire noise reduction thought filtration in frequency domain and the image normalization for further processing analyzed. Keypoints detectors and descriptors are used for image classification. Detectors FAST and Harris corner detector and descriptors SURF, BRIEF and BRISK are emphasized as well as their evaluation in terms of potential contribution to this work.
|
Page generated in 0.122 seconds