• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 9
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] DESEMPENHO MECÂNICO DE COMPÓSITOS CIMENTÍCIOS DE COMPORTAMENTO STRAIN-HARDENING SUBMETIDOS A CARREGAMENTOS COMBINADOS E DE IMPACTO / [en] ON THE MECHANICAL BEHAVIOR OF STRAIN HARDENING CEMENTITIOUS COMPOSITES (SHCC) UNDER COMBINED AND IMPACT LOADING

TATHIANA CARAM SOUZA DE PAULA FIGUEIREDO 24 May 2022 (has links)
[pt] O concreto armado (CA) tem sido amplamente utilizado em construções civis durante quase dois séculos devido a sua versatilidade e relativamente baixo custobenefício quando comparado com outros sistemas estruturais. É, notoriamente, o sistema mais adotado na construção de obras estratégicas e de infraestrutura. No entanto, as construções de CA estão em constante deterioração. Sobretudo nas últimas décadas, atenção especial vem sendo dada à influência de cenários dinâmicos nesse tipo de sistema estrutural devido à intrínseca baixa resistência à tração e fragilidade do concreto, que promovem extensos horizontes de fissuração na ocorrência desses eventos. A presente investigação dedicou-se à avaliação de duas variações de compósitos cimentícios de comportamento strain-hardening (SHCC) como material de reforço para melhorar a resistência ao impacto de edifícios existentes, em especial membros estruturais com falhas críticas por cisalhamento. SHCC é uma classe relativamente nova de compósito cimentício reforçado com fibras, em geral microfibras sintéticas com fração volumétrica média de 2 %. Estudos recentes já demonstraram que este compósito é capaz de deformarse substancialmente quando submetido à tração direta (até 6% dependendo da dosagem) durante o estágio de múltipla-fissuração, enquanto sustenta uma abertura de fissura de até 100 μm. O SHCC parece especialmente adequado para resistir a impactos de alta velocidade devido ao número relevante de superfícies que se formam durante a sua fase de deformação, uma vez que a grande quantidade de superfícies que são formadas durante o processo de múltipla-fissuração representa uma perspectiva elevada de dissipação de energia sem reduzir a capacidade de carregamento. Dois tipos de SHCC de resistência normal foram escolhidos para serem avaliados nesta investigação. Os compósitos diferenciavam-se principalmente no tipo de fibra de reforço: PVA e UHMWPE. Como os elementos estruturais incorporados em estruturas estão frequentemente sujeitos a estados multiaxiais de tensão, para avaliar o potencial de SHCC como material de reforço, ensaios combinados de torção e tensão foram desenvolvidos. Tais resultados permitiram o aprofundamento da compreensão do desempenho mecânico dos SHCC em análise sob cisalhamento, ao mesmo tempo que permitem a combinação desses esforços com tensões normais de tração. Em seguida, o potencial efetivo do SHCC no melhoramento da resistência e resiliência de elementos estruturais existentes a cargas de impacto foi investigado por um extenso programa experimental que contou com 24 vigas de escala real. Os parâmetros variados foram: (i) o tipo de SHCC; (ii) a configuração de reforço interno (espécimes com e sem estribos); (iii) a energia de impacto (que variou entre 2,1 kJ e 6,4 kJ, correspondendo a velocidades aproximadas de 17 m/s a 30 m/s, respectivamente). Os resultados foram avaliados em termos da resposta mecânica, padrões de fissuração, e análise modal. Foi demonstrado que ambos os tipos de SHCC contribuíram para a melhora da resistência ao impacto das vigas de CA reforçadas, melhorando expressivamente a resposta dinâmica residual e de estabilidade, enquanto contribuíram efetivamente para segurança de usuários ao propiciar uma redução substancial de detritos desprendidos durante os testes. O SHCC reforçado com fibras de UHMWPE mostrou-se menos sensível à presença ou ausência de estribos, sugerindo que esse compósito seja o mais adequado para aplicações de reforço de cisalhamento em cenários dinâmicos onde existe uma deficiência, ou incerteza, sobre o reforço transversal interno dos membros existentes. / [en] Reinforced concrete (RC) has been widely used in civil constructions for almost two centuries due to its versatility and relatively low cost-effectiveness ratio when compared with other structural systems. It is notably the preferred material for the construction of strategic infrastructures. However, RC constructions are in constant deterioration. Special attention had been given in the last decades to the influence of dynamic scenarios on RC structures due to concrete s inherent low tensile strength and brittle nature, which promotes intense cracking during these events. The present research focused on the assessment of two variations of strainhardening cementitious composites (SHCC) as strengthening material to improve the impact resistance of existing buildings, moreover structural members with critical shear failure. SHCC is a somewhat new class of fiber-reinforced composite reinforced with synthetic microfibers with an average content of 2 % in volume. Previous research studies already demonstrated that this composite is able to yield substantial deformations under tension (up to 6 % depending on the dosage) during its multiple-cracking phase, while enduring a crack-width limit of 100 μm. SHCC seems especially appropriate to withstand high-velocity impacts due to the relevant number of surfaces that are formed during its deformation phase since it represents a high perspective of energy dissipation without reducing load-bearing capacity. Two types of normal-strength SHCC were chosen to be assessed in this research. The composites differed mainly in the type of reinforcing fiber: PVA, and UHMWPE. As structural members embodied in structures are often subjected to multiaxial stress states, to evaluate SHCC´s potential as a strengthening material, combined torsion and tension tests were developed. These tests deepen the understanding of SHCC s mechanical performance under shear, while also enabled the combination with normal stresses. Then, SHCC s actual potential to improve the impact resistance and afterlife of existing structural members was investigated during an extensive experimental program that counted with 24 real-scale beams. The varied parameters were: (i) the type of SHCC; (ii) the internal reinforcement configuration (specimens with, and without stirrups); (iii) the impact energy (which was varied between 2.1 kJ and 6.4 kJ, corresponding to approximated velocities of 17 m/s to 30 m/s, respectively). The results were assessed in terms of their mechanical response, cracking patterns, and modal analysis. It was demonstrated that both types of composites improved the impact resistance of the strengthened RC members, outstandingly improving the impact safety with regards to residual dynamic response and stability while presenting a substantial reduction of spalling and scabbing material. The SHCC produced with UHMWPE fibers appeared to be less sensitive to the presence or absence of stirrups, posing as more suitable alternative for shear strengthening applications within dynamic scenarios where there is a deficient, or even uncertainty, about the internal transversal reinforcement of the existing members.
2

ASSESSMENT OF STRENGTHENING EFFECT ON RC BEAMS WITH UHP-SHCC

NAKAMURA, Hikaru, UEDA, Naoshi, KUNIEDA, Minoru, KAMAL, Ahmed January 2008 (has links)
No description available.
3

[pt] COMPORTAMENTO MECÂNICO DE COMPÓSITOS CIMENTÍCIOS DO TIPO SHCC UTILIZANDO REFORÇOS HÍBRIDOS / [en] MECHANICAL BEHAVIOUR OF HYBRID FIBER-REINFORCED STRAIN HARDENING CEMENTITIOUS COMPOSITES

15 September 2020 (has links)
[pt] O presente trabalho investigou o comportamento mecânico de compósitos cimentícios do tipo SHCC (Strain Hardening Cementitious Composites) de resistência comum e alta resistência, reforçados com fibras de PVA, UHMWPE (polietileno de peso molecular ultra-elevado), aço e reforços híbridos. Para o estudo, o volume total de fibras foi mantido constante em 2,0 por cento, com objetivo de manter a trabalhabilidade dos compósitos. As fibras de PVA e polietileno foram parcialmente substituídas por fibras de aço na proporção de 0,5 por cento e 1,0 por cento e a resposta mecânica foi estudada a partir de ensaios de tração direta, flexão de quatro pontos em placas e ensaios de flexão de três pontos em prismas com entalhe. O padrão de fissuração foi analisado utilizando imagens de alta resolução. O efeito escala dos compósitos reforçados com fibras de PVA e polietileno também foi investigado através de ensaios de tração direta e de flexão de quatro pontos utilizando dois tamanhos de corpos de prova. Os resultados mostraram que as fibras de PVA têm melhor desempenho que as fibras de polietileno para matrizes de resistência comum e que para ambas as matrízes, a substituição parcial das fibras de polietileno e PVA por fibras de aço tem o benefício de aumentar a resistência, mas promove redução na capacidade de deformação dos compósitos. O estudo sobre o efeito-escala também mostrou que a resposta mecânica destes materiais muda com a geometria dos corpos de prova. Por último, os compósitos foram utilizados como materiais de reparo estrutural em vigas submetidas a dano prévio e os resultados mostraram a viabilidade da utilização do SHCC como material de reparo. / [en] The present work investigated the mechanical behavior of normal and highstrength Strain Hardening Cementitious Composites (SHCC) reinforced with PVA, UHMWPE (ultra-high molecular weight polyethylene), steel and hybrid fibers. For the study, the total volume of fibers was kept constant at 2.0 percent in order to maintain the workability of the composite system. PVA and polyethylene were partially replaced by steel fibers in 0.5 percent and 1.0 percent. The mechanical response was measured under direct tension tests, four-point bending tests on plates and three point-bending tests on notched specimens. The crack pattern was investigated using high resolution image capturing procedure. The size-effect of the composites reinforced with PVA and polyethylene fibers was also investigated under direct tension test and four-point bending tests using two sizes of specimens. The results have shown that PVA fibers have a better performance than polyethylene fibers for normal strength matrices and that for both normal and high strength matrices the partial replacement of polyethylene and PVA fibers by steel fibers has the benefit of increasing the strength, but it reduces the strain capacity of the composites. The investigation about the size-effect also have shown that mechanical response of these composites changes with the geometry of the specimens. Finally, the composites were used as structural repair in beams subjected to previous damage and the results verified the feasibility of SHCC as a repair material.
4

A fully coupled dynamic framework for two-scale simulations of SHCC

Tamsen, Erik 26 March 2021 (has links)
In dieser Dissertation wird eine allgemeine zweiskalige Homogenisierungsmethode für große Deformationen entwickelt, welche die Trägheitskräfte der Mikroskala konsistent berücksichtigt. Die energetische Skalenkopplung der Methode basiert auf der erweiterten Hill-Mandel Bedingung für Makrohomogenität. Darüber hinaus wird die kinematische Skalenkopplung diskutiert und eine Volumenintegrals-Verschiebungsbedingung aufgezeigt, die eine allgemeine dynamische Betrachtung ermöglicht. Um einen effizienten Algorithmus zu gewährleisten, werden vier makroskopischen Tangenten-Module in geschlossener Form hergeleitet. Es werden zwei Rechenbeispiele genutzt, um allgemeine Eigenschaften der Methode zu analysieren. Dazu gehören das makroskopische Konvergenzverhalten und die Übereinstimmung mit einskaligen Referenzsimulationen. Des Weiteren wird der Einfluss der Verschiebungsbedingung und die Wahl der Einheitszelle als representatives Volumenelement auf die Antwort der Makroskale untersucht. Der Fokus der Arbeit wird im Anschluss auf die Modellierung hochduktiler Betone (Engl.: Strain-Hardening Cementitious Composites – SHCC) unter Stoßbelastung gelegt. Zunächst wird anhand von experimentellen Daten ein vereinfachtes Materialmodell kalibriert, welches das homogenisierte Faserauszugsverhalten repräsentiert. Danach wird dieses Faserauszugsmodell auf der Mikroskale eingesetzt und mit der vorgestellten Homogenisierungsmethode untersucht. Schließlich wird ein Split-Hopkinson-Bar Zugversuch numerisch repliziert. Dieser wird verwendet um die Funktionaltät der Methode aufzuzeigen, wie dynamische Effekte des Materials und der Struktur untersucht werden können. / A general numerical two-scale homogenization method for large strains is developed, which consistently takes into account inertia forces at the microscale. The energetic scale coupling of the framework is based on the extended Hill-Mandel condition of macro-homogeneity. Furthermore, kinematic scale links are discussed and a volume integral displacement constraint is proposed. To enable an efficient algorithm, closed form formulations of four macroscopic tangent moduli are derived. These consistently include the microscale inertia effects as well as the proposed displacement constraint. Two numerical examples are presented, a layered microstructure and a locally resonant material. These examples are used to analyze general properties of the presented framework, namely the macroscopic convergence behavior and the overall match with single-scale reference calculations. In addition, both the displacement constraint and the choice of unit cell as representative volume element are studied with respect to their influence on the macroscopic response. Subsequently, the thesis focuses on the modeling of strain-hardening cementitious composites under impact loading. First, a simplified material model representing the homogenized fiber pullout behavior is calibrated using experimental data. Then, this fiber pullout model is used at the microscale and studied using the proposed dynamic homogenization framework. Finally, a split Hopkinson bar tension test is numerically replicated and used to showcase the ability of the framework to thoroughly study the dynamic effects of the material and structure.
5

石灰石微粉末を添加した超高強度ひずみ硬化型モルタルの材料特性の評価

中村, 光, 上田, 尚史, 国枝, 稔, 梅田, 靖司 January 2011 (has links)
No description available.
6

アスファルト敷設時の熱の影響を受けた超高強度ひずみ硬化型モルタルの性能

中村, 光, 長嶌, 宏弥, 国枝, 稔, 江口, 輝行 January 2011 (has links)
No description available.
7

Modeling of Strain-Hardening Cement-based Composites (SHCC): A Finite Element Method using the Strong Discontinuity Approach (SDA) with Explicit Representation of Fibers

Shehni, Alaleh 15 March 2021 (has links)
Concrete is a predominant construction material due to several advantages; however, the pure cementitious composites have shown quasi-brittle behavior with undesirable typical large cracks under tensile loading conditions. Thus, the addition of a small volume of short fibers is a well-known strategy to increase the ductility and toughness of cementitious matrices besides optimization of the crack opening. Strain-hardening cement-based composites (SHCCs) is a particular class of fiber-reinforced concretes (FRCC) that can develop controlled multiple cracks while subjected to incremental tensile loading conditions. However, a proper composition design, especially concerning fiber and bond properties, still follows a trial and error approach. This work presents a newly developed model to simulate SHCC at the meso-scale level. This model is based on Finite-Element-Method and allows for nonlinear behavior for cement matrix, fiber material, and bond laws. Concerning three complexities of target FRCC, i.e., crack formation in the cement matrix, a large number of explicit fibers with arbitrary random distribution, and fibers’ interaction with the cement matrix via the bond, extra features are added to standard FE consist of: • Further development of the Strong Discontinuity Approach (SDA) to model discrete cracking of continuum elements on the element level • Discretization of single fibers by truss elements with truss nodes independently placed of continuum nodes • Connecting SDA elements to explicit truss elements by particular bond elements. In this research study, first, theoretical basics and special implementation issues were described. Later, this newly developed model was calibrated with several simple configurations. The bond law utilized in the simulation was derived from single fiber pullout test and calibrated with several analyses. In the next step, 2D SHCC dumbbell specimens under tensile loading condition were simulated, and a series of numerical case studies were performed to assess the quality, credibility, and limitations of the numerical model. It should be noted that cracking patterns could not be directly compared to experimental cracking patterns as the simulation model’s current state is deterministic by random material properties that influence the experimental specimen behavior. Taking the effect of random field and other simplifying assumptions into account, the simulation model seems to describe enumerated SHCC behavior at an acceptable level. In summary, a further base is given for the target-oriented design of FRCC material composition to reach the given objectives of material properties. The concepts and methods presented in this study can simulate short and thin polymer fibers in a random position and steel fibers and structures with long reinforcement in a regular arrangement.
8

Schädigungsmechanismen hochduktiler Betone bei zyklischer Belastung

Müller, Steffen 27 September 2023 (has links)
Diese Dissertation fokussiert auf den Hochduktilen Beton, eine Entwicklung faserverstärkten Feinbetons, mit erheblichem Zugdehnungspotential. In Laborversuchen stellen Dehnwerte von 4 - 5% keine Seltenheit dar. Die praktische Anwendbarkeit dieses Werkstoffs leidet unter einigen Wissenslücken bezüglich der mechanischen Eigenschaften und der Langzeitstabilität. Eine Vielzahl der bisher mit diesem Material geleisteten Forschungsarbeit wurde im Labormaßstab mit Proben unter 40 cm in der längsten Dimension und im Bereich der Faser-Matrix-Interaktion durchgeführt. Bisher ausgeführte großmaßstäbliche Anwendungen beruhen zumeist auf diesen kleinmaßstäblichen Versuchen. Die im Buch beschriebenen experimentellen und theoretischen Arbeiten beleuchten das Feld des zyklischen Materialverhaltens. Bei den Untersuchungen stehen das grundlegende Verständnis des Materialverhaltens und die Beschreibung der Schädigungsmechanismen im Vordergrund. Dazu wurden verschiedene quasi-statische und zyklische Zug-Schwell- als auch Wechselbelastungen am Kompositwerkstoff untersucht. Aufgrund der Vielzahl experimenteller Ergebnisse konnte die Dominanz einzelner Schadmechanismen in Abhängigkeit der Belastung bestimmt werden. Darauf aufbauend konnte das Auftreten der beschriebenen Degradationsmechanismen auch an großmaßstäblichen Prüfkörpern unter zyklischer Belastung nachgewiesen werden und somit ein erster Transferschritt vom Labormaßstab zu praxisrelevanten Abmessungen erfolgen. Zur Vereinheitlichung des gemeinsamen Verständnisses zwischen Numerik und Experiment wurde eine Modellvorstellung basierend auf rheologischen Elementen entwickelt. Diese ermöglichen eine realitätsnahe Beschreibung der Vorgänge rückgeführt auf die physikalischen Prozesse und erleichtern somit die Darstellung des Schädigungsablaufes. Basierend auf dem entwickelten Modell werden maßgebliche Einflussgrößen auf die Schädigung herausgestellt und somit Ansätze für Materialoptimierungen geliefert.
9

Mechanical characterization of strain-hardening cement-based composites under impact loading

Heravi, Ali Assadzadeh 01 December 2020 (has links)
Strain hardening cement-based composites (SHCC) and textile reinforced concrete (TRC) are two types of novel cementitious materials which can be used for strengthening structural elements against impact loading. Under tensile loading, these composites exhibit a strain hardening behavior, accompanied with formation of multiple cracks. The multiple cracking and strain hardening behavior yield a high strain and energy absorption capacity, thus making SHCC and TRC suitable materials for impact resistant structures or protective layers. The design and optimization of such composites for impact resistant applications require a comprehensive characterization of their behavior under various impact loadings. Specifically, the rate dependent behavior of the composites and their constituents, i.e. matrix, reinforcement, and their bond, need to be described. In the context of dynamic testing, SHCC, TRC and their constituents require customized experimental setups. The geometry of the sample, ductility of the material, the need for adapters and their influence on the measurements, as well as the influence of inertia are the key aspects which should be considered in developing the impact testing setups. The thesis at hand deals with the development process of various impact testing setups for both composite scale and constituent scale. The crucial aspects to be taken into account are discussed extensively. As a result, a gravity driven split-Hopkinson tension bar was developed. The setup was used for performing impact tension experiments on SHCC, TRC and yarn-matrix bond. Moreover, its applicability for performing impact shear experiments was examined. Additionally, a mini split-Hopkinson tension bar for high speed micromechanical experiments was designed and built. In the case of compressive loading, the performance of SHCC was investigated in a split-Hopkinson pressure bar. The obtained results, with focus on tensile experiments, were evaluated concerning their accuracy, and susceptibility to inertia effects. Full-field displacement measurement obtained by digital image correlation (DIC) was used in all impact experiments as a tool for visualizing and explaining the fracture process of the material in conjunction with the standard wave analysis performed in the split-Hopkinson bars.Moreover, the rate dependent behaviors of the composites were clarified with respect to the rate dependent behavior of their constituents.
10

Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing

Ogura, Hiroki, Nerella, Venkatesh Naidu, Mechtcherine, Viktor 25 February 2019 (has links)
Incorporating reinforcement into the practice of digital concrete construction, often called 3D-concrete-printing, is a prerequisite for wide-ranging, structural applications of this new technology. Strain-Hardening Cement-based Composites (SHCC) offer one possible solution to this challenge. In this work, printable SHCC were developed and tested. The composites could be extruded through a nozzle of a 3D-printer so that continuous filaments could be deposited, one upon the other, to build lab-scaled wall specimens without noticeable deformation of the bottom layers. The specimens extracted from the printed walls exhibited multiple fine cracks and pronounced strain-hardening characteristics under uniaxial tensile loading, even for fiber volume fractions as low as 1.0%. In fact, the strain-hardening characteristics of printed specimens were superior to those of mold-cast SHCC specimens.

Page generated in 0.0391 seconds