• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 13
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Inverkan av avvattningshastighet på formation och styrka på ark med låg ytvikt / The Influence of Dewatering Speed on Formation and Strength Properties of Low Grammage Webs

PULGAR NEIRA, HUGO ALEJANDRO January 2015 (has links)
For this thesis project, a method to analyze the dewatering time for the drainage process during laboratory sheet making on a Finnish sheet former was developed. The resulting method proved to deliver very reliable information about the dewatering time and the transient speed of the sheet making process. The method was then used for two studies to find how fiber types, refining and/or slower dewatering conditions affects sheet properties, like formation and tensile strength. The first study compared the difference in formation and strength between softwood and hardwood fibers at three different drainage restrictions. The second study was performed to understand the effect of refining on dewatering time and the connection to resulting sheet properties. The results of both studies showed that at low grammages, the fiber web that was formed did not affect the dewatering time and speed regardless of the type of fibers or refining level. This meant that the drainage for low grammages sheets was solely controlled by the drainage restriction of the draining pipe on the sheet former. In addition, tensile strength and formation of the sheets did not vary significantly between the different dewatering speeds tested and the differences where more related to fiber properties than to the modified conditions of the dewatering of the sheet making process.
12

An investigation of the reasons for increase in paper strength when beater adhesives are used

Leech, Howard Johnson 01 January 1953 (has links)
No description available.
13

Investigations of Partially Immersed Spinning Spheres in a Liquid Bath and Butterfly Flight

Langley, Kenneth Roy 21 March 2013 (has links) (PDF)
This thesis examines two important problems in fluid dynamics: that of a partially immersed sphere spinning in a bath of liquid and the measurement of flow velocities around a free flying butterfly. Although the actual problems are quite different, each problem incorporates many of the same principles and techniques. When a hard-boiled egg spins through a pool of milk on the kitchen counter, the milk rises up the sides of the egg and droplets are ejected. This phenomenon occurs when any partially submerged object whose radius increases upward from the fluid surface (e.g., spheres, inverted cones, rings, etc.), spins in a shallow bath of fluid. The fluid ejects from the surface at the maximum diameter in one of three ejection modes: jets, sheets, or sheet breakup. Additionally, a surprisingly large flow rate is induced by the spinning object. Spheres are used in this study to determine the effects of experimental parameters on the induced flow rate. High-speed imaging is used to experimentally characterize the modes of ejection and measure sheet breakup distance and velocities of liquid within liquid sheets. A theoretical model is derived using an integral momentum boundary layer analysis both beneath the free surface and in the thin film attached to the sphere. Experimental results are presented in comparison with predicted behavior with good agreement. The suitability of using a spinning sphere as a pump is also discussed. Second, the use of PIV to measure flow velocities around living species is becoming more widely adopted. Current efforts are starting to measure 3D, time-resolved velocities around insects in tethered flight. This work investigates the use of Synthetic Aperture PIV (SAPIV) in obtaining 3D, time-resolved volumetric velocity fields around a painted lady butterfly in free flight. Results are presented from several time steps during both the down stroke and upstroke of the butterfly showing the development of the leading edge vortex. The velocity field results have limited spatial resolution; however, the results show that SAPIV has potential in further investigating these flow structures. The reconstructed visual hull of the butterfly is also discussed.

Page generated in 0.1226 seconds