• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 19
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Návrh topného ohříváku / Feedwater heater design

Holčapek, Josef January 2021 (has links)
This diploma thesis deals with the design of a feedwater heater. The aim of the work is to perform thermal, hydraulic and stress analysis. A preliminary technical documentation is also part of this work. The first part contains a summary of basic types of heat exchangers and processes of heat transfer. The main part is focused on thermal analysis to determine the main parameters of the heat exchanger. Next part is followed up by hydraulic analysis to determine the pressure drop of the heating water. After that is created design of heat exchanger with stress analysis of the proposed wall thicknesses of the shell, water chambers and tubesheet. Achieved results are summarized and evaluated at the end of the diploma thesis.
12

Softwarová podpora návrhu a hodnocení výměníků tepla se svazkem trubek v plášti / Software Aided Design and Assessment of Shell and Tube Heat Exchangers

Létal, Tomáš Unknown Date (has links)
Subject of this work is a development of an integrated software environment for mechanical design and check of shell and tube heat exchangers. Processes of mechanical design and checks well as software which perform these processes are broken down to basic methods and parts. Mechanical design is usually performed according to some standards. In this work, ČSN EN 13445 is used. This standard describes mostly design check calculations which can be easily algorithmized. On the contrary, design calculations are described to some extent in few simple cases and mechanical design of shell and tube heat exchanger has not been fully algorithmized yet. Subject of this work is design of software, which will be capable of automatically performing mechanical design from datasheet as an input. Based on breakdown of design and check processes, requirements for key software features are derived. Important part of presented work is design and implementation of key modules – data model of shell and tube heat exchanger, module for mechanical design check according to ČSN EN 13445. These modules form basis of the software which will be developed further in future work.
13

Aspekty modelování trubkových výměníků tepla s využitím dostupných softwarových nástrojů / Aspects of tubular heat exchangers modeling using available software tools

Ondriašová, Patricie January 2016 (has links)
The proposed master´s thesis looks into the aspects of tubular heat exchangers modeling using available software tools. In the first – theoretical part there is a description of distribution and types of heat exchangers, including a detailed description of the industrial heat exchanger solved in this thesis. Another chapter is devoted to the main computational relations and calculation methods used in the context of thermo-hydraulic calculation. The main part of thesis consists of chapters, which are devoted to selected available software and perform calculations using the software in the specific industrial case. Finally, there is summary of the various software and a recommendation for the specific program for the need.
14

Stockage de chaleur dans les matériaux à changement de phase / Latent heat storage with phase change material

Soupart-Caron, Adèle 11 December 2015 (has links)
Cette étude concerne la compréhension des mécanismes de transfert de chaleur et le développement d’un système de stockage pour la valorisation de la chaleur fatale industrielle. L’utilisation de Matériaux à Changement de Phase (MCP) permet d’atteindre une densité énergétique élevée et de restituer la chaleur à température constante. Cependant, leur faible conductivité thermique impose d’améliorer les transferts thermiques, notamment par l’utilisation d’échangeurs à surface augmentée. Le but est de comprendre le comportement de tels échangeurs en régime transitoire au contact de MCP. Une étude expérimentale à basse température, où quatre échangeurs de type tube-calandre ont été testés avec différentes orientations (horizontale/verticale) et injections (haut/bas), a mis en évidence des phénomènes de transfert thermique importants, comme la convection naturelle à la charge et la contraction volumique à la décharge. Ces observations ont été validées par un modèle CFD tridimensionnel. Une méthode de comparaison des performances basée sur un calcul d’énergie par le biais d’un maillage expérimental est proposée et permet de sélectionner un échangeur selon les critères de densités énergétiques, de temps caractéristique et de coût. Trois MCP, envisagés pour l’application, ont alors été testés à température réelle (100-200 °C) au contact d’un échangeur tube inox à ailettes transverses en aluminium pour évaluer leur cyclabilité et comparer leur comportement. Le mélange de sels, H105 (Tfusion = 122 °C), n’est pas retenu pour l’application à cause de sa faible densité énergétique (≈ 56 kWh/m3) et sa plage de fusion trop étalée. L’acide sébacique (Tfusion = 132 °C) a un comportement répétable au cours des cycles et une densité énergétique plus élevée (≈ 66 kWh/m3). L’alcool de sucre, l’érythritol (Tfusion = 118 °C), présente de bonnes thermo-physiques (128 kWh/m3) mais la maîtrise de sa cristallisation est un point clé pour l’utiliser en tant que MCP. / This PhD thesis deals with the understanding of the heat transfer mechanisms and with the development of thermal energy storage system for the industrial waste heat recovery application. The use of Phase Change Materials (PCM) is attractive for its high storage density and its possibility to deliver heat at constant temperature. However, the PCM low thermal conductivity leads to develop heat transfer improvement methods, such as heat exchangers with increased heat transfer surface. The goal is to characterize the behavior of such heat exchangers An experimental study, where four several heat exchangers have been tested with different orientations (horizontal/vertical) and injection types (upward/downward), highlighted the impact of natural convection during the melting process and the volume contraction one during the solidification. These results have been validated through a 3D numerical model. A performance comparison method based on an energy calculation through an experimental mesh is proposed and enables to select a heat exchanger on criteria such as the storage density, the characteristic time and the cost. Three PCM, adapted to our application, have been tested at the intended temperature (100-200 °C) by integrating them into a storage system made of a stainless steel tube with aluminum circular fins. Their ability to resist to repeated cycles has been assessed and their behavior has been compared. The salts mixture, H105 (Tmelting = 122 °C), is not selected for the application because of it low storage density (≈ 56 kWh/m3) and its large melting area. The sebacic acid (Tmelting = 132 °C) has a repeatable behavior with cycles and a higher storage density (≈ 66 kWh/m3) and is appropriate as storage material. The sugar alcohol, erythritol (Tmelting = 118 °C), has good thermo-physical properties (128 kWh/m3) but the crystallization control is a key point to use it as a PCM.
15

Výpočtové postupy pro tepelně-hydraulický návrh a kontrolu nekonvenčních zařízení na výměnu tepla / Calculation algorithms for thermal-hydraulic design and rating of unconventional heat transfer equipment

Mikeška, Petr January 2008 (has links)
The aim of diploma thesis is creating calculation algorithms off single types unconventional heat transfer equipment and their aplication in thermal - hydraulic calculations in the industrial aplication . The main attention is paid to shell and tube heat exchangers with ROD and disc baffle system and radiation heat exchanger. All of these exchangers are used mainly in process of waste thermic destruction. The theoretical part of the work describes construction details of each heat exchanger and calculation algorithms of these equipments. The practical part of the work applies theoretic calculation alghortims in the industrial aplication which is design and rating. In the final part advantages and disadvantages of results have been assessed for construction and process aspects.
16

Návrh výměníků tepla pro vysokoteplotní aplikace / Design of heat exchangers for high temperature applications

Jonák, Martin January 2010 (has links)
This thesis is devoted to thermal-hydraulic design and rating of heat exchangers with the specialized commercial software HTRI. These heat exchangers are solved for real high-temperature applications, where the hot fluid is a flue gas with high temperature (above 500 °C). In the thesis is made a brief analysis of the conventional design of heat exchangers usable for high-temperature aplications, description of the basic relations, description and brief user manual of software HTRI. Further, work includes a comparative study of methods for calculation of pressure drop of the fluid at 180° elbows, as support analysis for solution of required applications characterized by low pressure drop of process fluids.
17

Predikce průběhu teplot pracovních látek ve výměníku tepla / Prediction of fluids temperature profiles in heat exchanger

Havelková, Pavla January 2013 (has links)
This master’s thesis is focused on the description and processing of the cell method, which is generally recommended for prediction of fluids temperature profiles in heat exchanger. In the thesis the basic equations for calculating heat transfer are presented and is also described the current situation in the field of computational prediction of fluids temperature profiles in heat exchangers. The cell method is solved by using the software Maple and is applied to the specific case of industrial heat exchangers. The results obtained by the cell method are compared with the results obtained by educational version of software HTRI Xchanger Suite. By this comparison explicitness of the cell method is assessed.
18

Parameter Study of Geometrically Induced Flow Maldistribution in Shell and Tube Heat Exchangers

Schab, Richard, Dorau, Tim, Unz, Simon, Beckmann, Michael 30 March 2023 (has links)
Shell and tube heat exchangers (STHEs) are the most common type of heat exchanger in preheat trains (PHT) of oil refineries and in chemical process plants. Most commercial design software tools for STHE assume uniform distribution over all tubes of a tube bundle. This leads to various challenges in the operation of the affected devices. Flow maldistribution reduces heat duty of STHE in many applications and supports fouling buildup in fluids that tend to particle, bio, and crystallization fouling (Verein Deutscher Ingenieure, ed., 2010, Heat Atlas, 2nd ed., VDI-Buch., Springer-Verlag). In this article, a fluid mechanics study about tube side flow distribution of crude oil and related hydrocarbons in two-pass PHT heat exchangers is described. It is shown that the amount of flow maldistribution varies significantly between the different STHE designs. Therefore, a parameter study was conducted to investigate reasons for maldistribution. For instance, the nozzles diameter, type, and orientation were identified as crucial parameters. In consequence, simple design suggestions for reducing tube side flow maldistribution are proposed.
19

Moderní technologické prvky pro trubkové výměníky tepla / Modern technological elements for tubular heat exchangers

Plánková, Tereza January 2020 (has links)
The aim of this diploma thesis is to get acquainted with modern technological elements currently used in shell-and-tube heat exchanger in the shell-side and tube-side, thermal-hydraulic calculation of selected elements and comparison of thermal-hydraulic properties with classically used competing technological elements. The work deals mainly with EM baffle in the tube-side and tube inserts like the twisted tape type (and its modifications) and coiled wire in the tube-side. The theoretical part is focused on acquaintance with classical technological elements in shell-and-tube heat exchanger and with basic thermal-hydraulic calculations, practical part then on acquaintance with modern elements and thermal-hydraulic calculation of selected elements. These calculations are then compared with the results of the thermo-hydraulic calculation of similar elements.

Page generated in 0.104 seconds