Spelling suggestions: "subject:"shear structures""
11 |
Ferrocement Super-Insulated Shell House Design and ConstructionLugowski, Jan January 2013 (has links)
The purpose of this paper is to explore the ferrocement building technique for sustainable housing. Ferrocement involves the use of conventional cement with fine aggregate and several layers of steel, with the advantage of higher strength than conventional reinforced concrete, limited formwork and thinner sections. It is particularly suitable for thin shell structures, where geometry minimizes bending loads. Architectural flexibility is one of the main priorities considered in sustainable housing, along with energy efficiency, occupant comfort, resistance to seismic and tornado events, affordability and durability. Ferrocement’s historical and present applications are covered, along with other building techniques, in order to establish best practices and possible improvements. Reducing construction labor is a particular focus, which has limited ferrocement development in recent years. Computer modeling of shell form finding is described, with three case studies created. A structural analysis method is described and applied to each case study to verify general building code safety. Energy modeling is performed in two climates for each case study in the United States and compared to key PassivHaus energy demand limits. Net zero energy use is possible with on-site solar photovoltaic generation.
|
12 |
Quasi-static impact of foldcore sandwich panelsGattas, Joseph M. January 2013 (has links)
This thesis considered the design of new and improved foldcore sandwich panels suitable for high-performance energy absorption applications. This was achieved by utilising origami geometry design techniques to alter foldcore structures such that they possessed different mechanical behaviours and failure modes. The major findings of this thesis were in three areas as follows. First, a modified planar foldcore geometry was developed by introducing sub-folds into a standard foldcore pattern. The new geometry, deemed the indented foldcore, successfully triggered a high-order failure mode known as a travelling hinge line failure mode. This was found to have a much higher energy absorption than the plate buckling failure mode seen in an unmodified foldcore structure. A comprehensive numerical, theoretical, and experimental analysis was conducted on the indented core, which included the development of a new foldcore prototyping method that utilised 3D printed moulds. It was shown that compared to available commercial honeycomb cores, the indented foldcore had an improved uniformity of energy absorption, but weaker overall peak and crushing stresses. Second, rigid origami design principles were used to develop extended foldcore geometries. New parametrisations were presented for three patterns, to complete a set of Miura-derivative geometries termed first-level derivatives. The first-level derivative parametrisations were then combined to create complex, piecewise geometries, with compatible faceted sandwich face geometry also developed. Finally, a method to generate rigid-foldable, curved-crease geometry from Miura-derivative straight-crease geometry was presented. All geometry was validated with physical prototypes and was compiled into a MATLAB Toolbox. Third, the performance of these extended foldcore geometries under impact loadings was investigated. An investigation of curved-crease foldcores showed that they were stronger than straight-crease foldcores, and at certain configurations can potentially match the strength, energy-absorption under quasi-static impact loads, and out-of-plane stiffness of a honeycomb core. A brief investigation of foldcores under low-velocity impact loadings showed that curved-crease foldcores, unlike straight-crease foldcores, strengthened under dynamic loadings, however not to the same extent as honeycomb. Finally, an investigation of single-curved foldcore sandwich shells was conducted. It was seen that foldcore shells could not match the energy-absorption capability of an over-expanded honeycomb shell, but certain core types did exhibit other attributes that might be exploitable with future research, including superior initial strength and superior uniformity of response.
|
13 |
Higher-Order Spectral/HP Finite Element Technology for Structures and Fluid FlowsVallala, Venkat Pradeep 16 December 2013 (has links)
This study deals with the use of high-order spectral/hp approximation functions in the finite element models of various nonlinear boundary-value and initial-value problems arising in the fields of structural mechanics and flows of viscous incompressible fluids. For many of these classes of problems, the high-order (typically, polynomial order p greater than or equal to 4) spectral/hp finite element technology offers many computational advantages over traditional low-order (i.e., p < 3) finite elements. For instance, higher-order spectral/hp finite element procedures allow us to develop robust structural elements for beams, plates, and shells in a purely displacement-based setting, which avoid all forms of numerical locking. The higher-order spectral/hp basis functions avoid the interpolation error in the numerical schemes, thereby making them accurate and stable. Furthermore, for fluid flows, when combined with least-squares variational principles, such technology allows us to develop efficient finite element models, that always yield a symmetric positive-definite (SPD) coefficient matrix, and thereby robust direct or iterative solvers can be used. The least-squares formulation avoids ad-hoc stabilization methods employed with traditional low-order weak-form Galerkin formulations. Also, the use of spectral/hp finite element technology results in a better conservation of physical quantities (e.g., dilatation, volume, and mass) and stable evolution of variables with time in the case of unsteady flows. The present study uses spectral/hp approximations in the (1) weak-form Galerkin finite element models of viscoelastic beams, (2) weak-form Galerkin displacement finite element models of shear-deformable elastic shell structures under thermal and mechanical loads, and (3) least-squares formulations for the Navier-Stokes equations governing flows of viscous incompressible fluids. Numerical simulations using the developed technology of several non-trivial benchmark problems are presented to illustrate the robustness of the higher-order spectral/hp based finite element technology.
|
14 |
Stochastic Lattice | A Generative Design Tool for Material Conscious Free Form Timber Surface ArchitectureSchmid, Matthew 30 April 2012 (has links)
This thesis attempts to resolve the contradictory relationship between the ecological merits of wood construction and the significant material intensity of recent free form timber surface structures. The building industry is now adept in the design and construction of freeform surface architecture, however new challenges have been introduced with the environmentally conscious desire to build these structures in wood. Lacking the formal versatility of steel and concrete, wood introduces a great deal of difficulty in the realization of complex form at an architectural scale. Powerful digital design and fabrication tools have recently made it possible to model, analyze and construct these buildings, but at the cost of heavy structural solutions that involve energy intensive fabrication processes and significant material waste. This approach contradicts the ecological benefits of wood, and raises the question of whether it is possible to achieve free and expressive form in timber surface architecture while maintaining an economy of means and material.
This question is addressed through the development of a generative design tool for the creation of material conscious free form timber surface architecture. The formation of the tool is informed by the field of computational morphogenesis, which draws from the natural growth processes of biological structures in the virtual synthesis of form. The tool is conceived as a morphogenetic material system, which consists of a generative algorithm that integrates material, structure and form in a single computational process. Specific material saving techniques deployed in the algorithm draw from existing research in timber shell design and material optimization. Established methods in the use of geodesic lines for the structural patterning of wood shells and stress driven material distribution make up the core concepts deployed in the algorithm. The material system is developed, refined and tested through the design and construction of an experimental free form timber lattice.
|
15 |
Stochastic Lattice | A Generative Design Tool for Material Conscious Free Form Timber Surface ArchitectureSchmid, Matthew 30 April 2012 (has links)
This thesis attempts to resolve the contradictory relationship between the ecological merits of wood construction and the significant material intensity of recent free form timber surface structures. The building industry is now adept in the design and construction of freeform surface architecture, however new challenges have been introduced with the environmentally conscious desire to build these structures in wood. Lacking the formal versatility of steel and concrete, wood introduces a great deal of difficulty in the realization of complex form at an architectural scale. Powerful digital design and fabrication tools have recently made it possible to model, analyze and construct these buildings, but at the cost of heavy structural solutions that involve energy intensive fabrication processes and significant material waste. This approach contradicts the ecological benefits of wood, and raises the question of whether it is possible to achieve free and expressive form in timber surface architecture while maintaining an economy of means and material.
This question is addressed through the development of a generative design tool for the creation of material conscious free form timber surface architecture. The formation of the tool is informed by the field of computational morphogenesis, which draws from the natural growth processes of biological structures in the virtual synthesis of form. The tool is conceived as a morphogenetic material system, which consists of a generative algorithm that integrates material, structure and form in a single computational process. Specific material saving techniques deployed in the algorithm draw from existing research in timber shell design and material optimization. Established methods in the use of geodesic lines for the structural patterning of wood shells and stress driven material distribution make up the core concepts deployed in the algorithm. The material system is developed, refined and tested through the design and construction of an experimental free form timber lattice.
|
16 |
Core–Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction ReactionCai, Bin, Hübner, Rene, Sasaki, Kotaro, Zhang, Yuanzhe, Su, Dong, Ziegler, Christoph, Vukmirovic, Miomir, Rellinghaus, Bernd, Adzic, Radoslav, Eychmüller, Alexander 28 February 2019 (has links)
The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of PdxAu-Pt core-shell aerogels comprised of an ultrathin Pt shell and a composition-tunable PdxAu alloy core. The universality of this strategy ensures the extension of core compositions to Pd-transition metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiency for oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg-1Pt and 2.53 mA cm-2, which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts.
|
17 |
Schalentragwerke mit funktionaler GradierungIllguth, Sandy, Lowke, Dirk, Kränkel, Thomas, Gehlen, Christoph 21 July 2022 (has links)
Betone für schlanke Schalentragwerke weisen zur Sicherstellung ausreichender Zugfestigkeiten oft einen hohen Stahlfasergehalt auf. Dies ist mit hohen ökologischen und monetären Kosten verbunden. Das Ziel war es daher, die Voraussetzungen für die Herstellung effizienter Schalentragwerke aus funktional fasergradierten Betonfertigteilen zu schaffen. / Concrete for slender load-bearing shell structures often has a high steel fibre content to ensure sufficient tensile strength. This is associated with high ecological and financial costs. Thus, the aim of this project was to create the prerequisites for the production of efficient shell structures made of functional fibre-graded precast concrete elements.
|
18 |
Modellreduktion und Substrukturtechnik am Beispiel von modularen Schalentragwerken aus ultrahochfestem BetonZhou, Lei, Simon, Jaan, Reese, Stefanie 21 July 2022 (has links)
Schalentragwerke sind aufgrund ihres vorteilhaften Lastabtragverhaltens im Membranzustand sehr geeignet für die Herstellung leichter Tragwerke. Der Schwerpunkt dieses Projekts liegt auf der Entwicklung einer geeigneten numerischen Methode, um möglichst effizient statische und dynamische Berechnungen durchzuführen und damit den Entwurf zu erleichtern. Für Entwurf und Analyse wird eine neuartige Kombination von Substrukturtechnik und Modellreduktion eingesetzt, um den notwendigen Rechenaufwand zu minimieren. [Aus: Einleitung] / Shell structures are very suitable for the construction of lightweight structures, especially because of the load bearing behaviour in the membrane state. Based on this concept, the main focus of this project is to develop suitable numerical methods to carry out the static and dynamic analysis efficiently, with the target of simplifying the design. For the design and analysis, a new methodology has been developed which couples substructuring and model order reduction. This allows to reduce the degrees of freedom of the system as well as the computational ef ort signif cantly. [Off: Introduction]
|
19 |
Growth optimization and characterization of regular arrays of GaAs/AIGaAs core/shell nanowires for tandem solar cells on silicon / Optimisation de la croissance et caractérisation de réseaux ordonnés de nanofils cœur/coquille GaAs/AlGaAs pour cellules solaires tandem sur siliciumVettori, Marco 16 April 2019 (has links)
L'objectif de cette thèse est de réaliser l'intégration monolithique de nanofils (NFs) à base de l’alliage Al0.2Ga0.8As sur des substrats de Si par épitaxie par jets moléculaires via la méthode vapeur-liquide-solide (VLS) auto-assistée et de développer une cellule solaire tandem (TSC) à base de ces NFs.Pour atteindre cet objectif, nous avons tout d'abord étudié la croissance de NFs GaAs, étape clé pour le développement des NFs p-GaAs/p.i.n-Al0.2Ga 0.8As coeur/coquille, qui devraient constituer la cellule supérieure de la TSC. Nous avons montré, en particulier, l'influence de l'angle d'incidence du flux de Ga sur la cinétique de croissance des NFs GaAs. Un modèle théorique et des simulations numériques ont été réalisées pour expliquer ces résultats expérimentaux.Nous avons ensuite utilisé le savoir-faire acquis pour faire croître des NFs p-GaAs/p.i.n-Al0,2Ga0,8As coeur/coquille sur des substrats de Si prêts pour l'emploi. Les caractérisations EBIC réalisées sur ces NFs ont montré qu'ils sont des candidats potentiels pour la réalisation d’une cellule photovoltaïque. Nous avons ensuite fait croître ces NFs sur des substrats de Si patternés afin d'obtenir des réseaux réguliers de ces NFs. Nous avons développé un protocole, basé sur un pré-traitement thermique, qui permet d'obtenir des rendements élevés de NFs verticaux (80-90 %) sur une surface patternée de 0,9 x 0,9 mm2.Enfin, nous avons consacré une partie de notre travail à définir le procédé de fabrication optimal pour la TSC, en concentrant notre attention sur le développement de la jonction tunnel de la TSC, l'encapsulation des NFs et le contact électrique supérieur du réseau de NFs. / The objective of this thesis is to achieve monolithical integration of Al0.2Ga0.8As-based nanowires (NWs) on Si substrates by molecular beam epitaxy via the self-assisted vapour-liquid-solid (VLS) method and develop a NWs-based tandem solar cell (TSC).In order to fulfil this purpose, we firstly focused our attention on the growth of GaAs NWs this being a key-step for the development of p-GaAs/p.i.n-Al0.2Ga0.8As core/shell NWs, which are expected to constitute the top cell of the TSC. We have shown, in particular, the influence of the incidence angle of the Ga flux on the GaAs NW growth kinetic. A theoretical model and numerical simulations were performed to explain these experimental results.Subsequently, we employed the skills acquired to grow p-GaAs/p.i.n-Al0.2Ga0.8As core/shell NWs on epi-ready Si substrates. EBIC characterizations performed on these NWs have shown that they are potential building blocks for a photovoltaic cell. We then committed to growing them on patterned Si substrates so as to obtain regular arrays of NWs. We have developed a protocol, based on a thermal pre-treatment, which allows obtaining high vertical yields of such NWs (80-90 %) on patterned Si substrates (on a surface of 0.9 x 0.9 mm2).Finally, we dedicated part of our work to define the optimal fabrication process for the TSC, focusing our attention to the development of the TSC tunnel junction, the NW encapsulation and the top contacting of the NWs.
|
20 |
Use of pervading internal shell-type substructures to dissolve compact componentsVakaliuk, Iurii 10 November 2022 (has links)
Nature brings lot of possibilities and inspirational ideas in various industries. Many fields of human activity from transportation, energy and electronics derives inspiration from natural structures and systems to be more efficient. The civil engineering and industry of building materials is not an exception. The ongoing joint research project CRC/TRR 280 [1] aimed on looking for a new methodology and approaches in design of light weight and bio inspired structures made of textile reinforced concrete (TRC). Special interest is on shell structures with membrane stresses that brings an extremely favourable span-to-material ratio that in turn means excellent structural performance. The current paper aimed to show the numerical side of the current research project.
|
Page generated in 0.0864 seconds