• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of Cellular Components Interacting with the Shiga-like Toxin 1 A1 Chain (SLT-1 A1)

Wei, Wei 23 July 2012 (has links)
Shiga-like toxin 1 (SLT-1) is produced by Escherichia coli strains like the pathogenic strain O157:H7. These bacterial strains are responsible for worldwide cases of food poisoning and water contamination, and the toxin is a major cause of hemorrhagic colitis and the hemolytic uremia syndrome. SLT-1 is defined as a type II ribosome-inactivating protein (RIP) and belongs to a family of plant and bacterial AB toxins. The A1 chain blocks protein synthesis in eukaryotic cells by depurinating a single adenine base in 28S rRNA. The mechanisms by which the A chain of SLT-1 interacts with the host components to route itself to the cytosol remains largely unknown. This thesis project identified a list of putative cellular proteins that interact with the SLT-1 A1 chain by the use of yeast-2-hybrid (Y2H) screens and HeLa lysate pull down/mass spectrometry analyses. Further assessment of the top 8 host interactors did not yield true interactions.
2

Identification of Cellular Components Interacting with the Shiga-like Toxin 1 A1 Chain (SLT-1 A1)

Wei, Wei 23 July 2012 (has links)
Shiga-like toxin 1 (SLT-1) is produced by Escherichia coli strains like the pathogenic strain O157:H7. These bacterial strains are responsible for worldwide cases of food poisoning and water contamination, and the toxin is a major cause of hemorrhagic colitis and the hemolytic uremia syndrome. SLT-1 is defined as a type II ribosome-inactivating protein (RIP) and belongs to a family of plant and bacterial AB toxins. The A1 chain blocks protein synthesis in eukaryotic cells by depurinating a single adenine base in 28S rRNA. The mechanisms by which the A chain of SLT-1 interacts with the host components to route itself to the cytosol remains largely unknown. This thesis project identified a list of putative cellular proteins that interact with the SLT-1 A1 chain by the use of yeast-2-hybrid (Y2H) screens and HeLa lysate pull down/mass spectrometry analyses. Further assessment of the top 8 host interactors did not yield true interactions.
3

Cell Targeted Ribosome Inactivating Proteins Derived from Protein Combinatorial Libraries

Perampalam, Subodini 01 August 2008 (has links)
Combinatorial protein libraries based on a protein template offer a vast potential for deriving protein variants harboring new receptor specificity while retaining other tem-plate functions to serve as library search-engines, cell-routing sequences and therapeutic domains. This concept was tested with the design and synthesis of protein libraries where short random peptide motifs were embedded directly within the catalytic A subunit of the bacterial ribosome-inactivating protein (RIP) known as Shiga-like toxin 1 (SLT-1). More precisely, a seven amino acid peptide epitope (PDTRPAP) was inserted between residues 245-246 of its A subunit (SLT-1APDTRPAP) and shown to preserve catalytic function while exposing the epitope. SLT-1 A chain libraries harboring tripep-tide and heptapeptide random elements were subsequently constructed, screened and shown to express more than 90% of expected cytotoxic A chain variants. Finally, more than 9,000 purified SLT-1 A chain variants were screened using their ribosome-inactivating function in a cell-based assay to identify mutants that are able to kill human melanoma 518-A2 cells. This search led to the striking discovery of a single chain RIP that displays selectivity for a panel of human melanoma cell lines as well as minimal immunogenicity when injected repeatedly into mice. This directed evolution of a RIP template provides a broad platform for identifying cell type specific cytotoxic agents.
4

A Ribosome-inactivating Protein Toxin as a Template for Cancer Drug Discovery

Cheung, Melissa 10 December 2012 (has links)
Cancer cells display aberrant receptors on their surface that can serve as targets for the development of directed drug therapies. As such, our group has utilized two parallel approaches to redirect the cytotoxic properties of a ribosome-inactivating protein (RIP), Shiga-Like Toxin 1 (SLT 1), by altering its receptor specificity to target and kill cancer cells. The first combinatorial protein library was constructed such that a randomized 7 AA long peptide was inserted within the cytotoxic domain (A chain) of SLT-1. A high-throughput protein-based screening campaign identified a novel A chain toxin variant (named SLT 1AIYSNKLM) capable of targeting and killing human melanoma cells. This variant harbours a peptide insert (IYSNKLM) that directs the A chain to kill human melanoma cell lines. Equilibrium binding studies using 125I-radiolabeled SLT-1AIYSNKLM were conducted to determine the equilibrium binding constant and receptor density on 518-A2 human melanoma cells. When injected into SCID mice bearing a human melanoma xenograft, nanoSPECT/CT imaging as well as the biodistribution profile showed marked tumour uptake and retention of the radiolabeled toxin variant. Furthermore, preliminary experiments have shown that the SLT-1AIYSNKLM receptor is a protein, highlighting the potential for this method to be used in the discovery of novel biomarkers. A second approach was employed to demonstrate that our toxin-based combinatorial library system can be adapted to target known cancer biomarkers. Specifically, SLT-1 A chain variants harbouring 12-residue inserts were expressed in a phage display library. The library was screened against cell lines expressing the human colon cancer marker carcinoembryonic antigen (CEA; CD66e; CEACAM-5) to identify candidates that not only targeted, but internalized into cancer cells within a 1 h period. Variant, CSTA-10, was found to kill CEA-expressing BxPC-3 cells. Overall, the directed evolution of an RIP template such as SLT-1 represents a novel and powerful strategy for the identification of tumour-targeted toxin variants.
5

Cell Targeted Ribosome Inactivating Proteins Derived from Protein Combinatorial Libraries

Perampalam, Subodini 01 August 2008 (has links)
Combinatorial protein libraries based on a protein template offer a vast potential for deriving protein variants harboring new receptor specificity while retaining other tem-plate functions to serve as library search-engines, cell-routing sequences and therapeutic domains. This concept was tested with the design and synthesis of protein libraries where short random peptide motifs were embedded directly within the catalytic A subunit of the bacterial ribosome-inactivating protein (RIP) known as Shiga-like toxin 1 (SLT-1). More precisely, a seven amino acid peptide epitope (PDTRPAP) was inserted between residues 245-246 of its A subunit (SLT-1APDTRPAP) and shown to preserve catalytic function while exposing the epitope. SLT-1 A chain libraries harboring tripep-tide and heptapeptide random elements were subsequently constructed, screened and shown to express more than 90% of expected cytotoxic A chain variants. Finally, more than 9,000 purified SLT-1 A chain variants were screened using their ribosome-inactivating function in a cell-based assay to identify mutants that are able to kill human melanoma 518-A2 cells. This search led to the striking discovery of a single chain RIP that displays selectivity for a panel of human melanoma cell lines as well as minimal immunogenicity when injected repeatedly into mice. This directed evolution of a RIP template provides a broad platform for identifying cell type specific cytotoxic agents.
6

A Ribosome-inactivating Protein Toxin as a Template for Cancer Drug Discovery

Cheung, Melissa 10 December 2012 (has links)
Cancer cells display aberrant receptors on their surface that can serve as targets for the development of directed drug therapies. As such, our group has utilized two parallel approaches to redirect the cytotoxic properties of a ribosome-inactivating protein (RIP), Shiga-Like Toxin 1 (SLT 1), by altering its receptor specificity to target and kill cancer cells. The first combinatorial protein library was constructed such that a randomized 7 AA long peptide was inserted within the cytotoxic domain (A chain) of SLT-1. A high-throughput protein-based screening campaign identified a novel A chain toxin variant (named SLT 1AIYSNKLM) capable of targeting and killing human melanoma cells. This variant harbours a peptide insert (IYSNKLM) that directs the A chain to kill human melanoma cell lines. Equilibrium binding studies using 125I-radiolabeled SLT-1AIYSNKLM were conducted to determine the equilibrium binding constant and receptor density on 518-A2 human melanoma cells. When injected into SCID mice bearing a human melanoma xenograft, nanoSPECT/CT imaging as well as the biodistribution profile showed marked tumour uptake and retention of the radiolabeled toxin variant. Furthermore, preliminary experiments have shown that the SLT-1AIYSNKLM receptor is a protein, highlighting the potential for this method to be used in the discovery of novel biomarkers. A second approach was employed to demonstrate that our toxin-based combinatorial library system can be adapted to target known cancer biomarkers. Specifically, SLT-1 A chain variants harbouring 12-residue inserts were expressed in a phage display library. The library was screened against cell lines expressing the human colon cancer marker carcinoembryonic antigen (CEA; CD66e; CEACAM-5) to identify candidates that not only targeted, but internalized into cancer cells within a 1 h period. Variant, CSTA-10, was found to kill CEA-expressing BxPC-3 cells. Overall, the directed evolution of an RIP template such as SLT-1 represents a novel and powerful strategy for the identification of tumour-targeted toxin variants.

Page generated in 0.0309 seconds