• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epitaxy of regioregular poly(3-hexylthiophene) : from structure determination to the growth of highly oriented Shish-Kebab fibers / Préparation des fibres orientées et nanostructurées de polymères conjugués semiconducteurs à structure Shish Kebab

Kayunkid, Navaphun 05 November 2012 (has links)
Le poly(3-hexylthiophène) régiorégulier (rr-P3HT) est l’un des matériaux phare pour les applications en électronique plastique. Afin d’améliorer les performances des dispositifs, il est important de comprendre et de contrôler la structure et la morphologie de la couche active. Des films minces de rr-P3HT cristallins et orientés peuvent être obtenus par epitaxie directionnelle par cristallisation (DEC) de 1,3,5-trichlorobenzène (TCB). Dans ce travail de thèse, nous présentons les avantages de la méthode DEC pour (i) déterminer la structure cristalline du rr-P3HT et pour (ii) étudier les fibres « shish-kebab », une morphologie alternative du rr-P3HT. La première partie de ce manuscrit consiste en l’analyse structurale par diffraction électronique de la forme I du P3HT obtenue dans les films epitaxiés. Afin d’affiner le modèle structural, nous avons fait varier la conformation des chaînes latérales. Dans un deuxième temps, nous avons appliqué ce même protocole afin de résoudre la structure du second polymorphe du P3HT (forme II) grâce à l’obtention de monocristaux parself-seeding. La deuxième partie du manuscrit est consacrée à l’élaboration de fibres orientées dites en « shish-kebab » par épitaxie dans un mélange TCB/Pyridine. La cinétique de croissance ainsi que l’orientation des chaînes de P3HT sont étudiés afin d’optimiser la méthode de préparation des fibres. L’effet de la masse moléculaire sur leur formation a également été évalué. Finalement les propriétés de transport de charges au sein de ces fibres ont été étudiées grâce à l’élaboration de transistors à effet de champ. / Regioregular poly(3-hexylthiophene) (rr-P3HT) is one of the promising materials for plastic electronic applications. Understanding as well as controlling the structure and morphology of the active layer is essential to improve the device efficiency. Highly crystalline and highly oriented rr-P3HT thin films can be obtained via directional epitaxial crystallization (DEC) in 1,3,5-trichlorobenzene (TCB). In this dissertation, we present the benefits of DEC method to (i) determine the crystal structure of rr-P3HT and (ii) to study shish-kebab fibers, an alternative morphology of rr-P3HT. The first part of this dissertation is related to the structural analysis of rr-P3HT form-I by using electron diffraction analysis on the epitaxied film. Furthermore, the modification of side chain conformation is used to improve the structural model. Finally, the determination protocol is also applied to resolve the preliminary crystal structure of rr-P3HT form II prepared by self-seeding method. The second part of thisdissertation is related to highly oriented shish-kebab fibers of rr-P3HT prepared by epitaxial crystallization in a mixture of TCB and pyridine. The investigations of growth kinetics and orientation of P3HT chains in the fiber are performed in order to determine the optimization of preparation conditions and growth mechanism of the fibers. In addition, the effect of molecular weight on the formation of the fibers is investigated. Finally, the charge transport properties of the fibers are measured by using the field effect transistor configuration.
2

Flow induced crystallisation of polyethylene in presence of nanoparticles

Patil, Nilesh January 2010 (has links)
Polymeric systems become increasingly complicated and multifunctional if they involve a larger level of structural complexity. In the last couple of decades the level of interest has gradually shifted from the μm-scale to the nm-scale region, for instance, systems having at least one structural size below 100nm, e.g. nanocomposites. The physical properties of polymers such as crystallisation, tensile modulus, impact strength and viscosity are strongly influenced by the presence of additives in the polymer matrix. Semicrystalline polymers comprise nearly two-thirds of all synthetic polymers. These are processed to form films, fibers, and moulded articles using operations such as extrusion, moulding, fiber spinning, film blowing etc. During these processes, the polymer melt is subjected to complex and intense flow fields (shear or elongational) after which the polymer crystallises. The morphology of the semicrystalline polymer in the final product and subsequently its properties and quality, depend on the manner in which the polymer crystallises from the flowing melt. The subject is continuously driven by the quest to understand the molecular mechanism of flow induced crystallisation; nevertheless, the flow induced crystallisation in presence of nanofillers has received little attention. The thesis deals with the crystallisation studies of polymer molecules during shear in presence of nanofillers (viz. single walled carbon nanotube (SWCNT) and zirconia particle) having different aspect ratio. For this purpose, the polyethylene (PE) consisting of desired molar mass and molar mass distribution within the processing range is utilised. The morphology of semicrystalline polymer is revealed using time resolved X-ray scattering (SAXS/WAXS) techniques. The rheological aspects of polymer melt in presence of nanoparticles are manifested. In chapter 2, the effect of SWCNTs on the crystallisation kinetics of polymers has been studied with and without application of shear rate. The shear rate effect on the formation of shish-kebab structures in the polymer containing SWCNTs is investigated. The effect of shear rates on the stretching of long chains of PE is verified using the approach involving the use of Deborah number. The study reveals the significance of SWCNTs on crystallisation of PE. In chapter 3, the influence of zirconia nanoparticles on crystal orientation of polymers is studied. Enhanced crystallisation kinetics is observed due to presence of zirconia nanoparticles. Overall crystal orientation is improved as a result of zirconia nanoparticles in the polymer matrix. In chapter 4 of the thesis, the role of broad molecular weight distribution of PE in formation of oriented (shish-kebab) structures is demonstrated. The presence of nanoparticles of different aspect ratios and binding efficiency with polymer on the formation of highly oriented structures in the early stage crystallisation is verified. The study reveals the significant role of SWCNTs in shish-kebab structure formation as compared to zirconia nanoparticles. Further, the insight on the selective adsorption of polymer chains to the nanoparticles is provided. In chapter 5 of the thesis, the molecular interaction between polymer and nanoparticles under shear above the equilibrium point (T = 141.2°C) is investigated. The study reveals the major role of SWCNTs with high aspect ratio, in the stability of flow induced precursor (FIP) and formation of extended chain crystals, as a result of strong interaction with PE molecules. On contrary, the poor interaction of Zirconia particles having low aspect ratio, with PE molecules prohibits molecular chain extension.
3

Structure-Property Relationships in Some Novel Polyolefins

Dias, Peter Simon 17 June 2008 (has links)
No description available.
4

Effect of processing parameters on the morphology development during extrusion of polyethylene tape: An in-line small-angle X-ray scattering (SAXS) study

Heeley, E.L., Gough, Timothy D., Hughes, D.J., Bras, W., Rieger, J., Ryan, A.J. 11 October 2013 (has links)
No / The in-line development of crystalline morphology and orientation during melt extrusion of low density polyethylene (LDPE) tape at nil and low haul-off speeds has been investigated using Small-Angle X-Ray Scattering (SAXS). The processing parameters, namely haul-off speed and distance down the tape-line have been varied and the resulting crystalline morphology is described from detailed analysis of the SAXS data. Increasing haul-off speed increased orientation in the polymer tape and the resulting morphology could be described in terms of regular lamellar stacking perpendicular to the elongation direction. In contrast, under nil haul-off conditions the tape still showed some orientation down the tape-line, but a shish-kebab structure prevails. The final lamellae thickness (similar to 50 angstrom) and bulk crystallinity (similar to 20%), were low at, for all processing conditions investigated, which is attributed to the significant short-chain branching in the polymer acting as point defects limiting lamellae crystal growth. (C) 2013 Elsevier Ltd. All rights reserved.

Page generated in 0.0402 seconds