• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 102
  • 102
  • 31
  • 30
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 13
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Reactivity of Hydrocarbon Fuels: Reaction Kinetics and Ignition Delay Times

KHALED, Fethi 11 1900 (has links)
This PhD thesis is an analysis of the chemical kinetics and oxidation behavior of fuel components via experiments and correlations. First, a number of experimental studies of the reactivity of OH radicals with unsaturated hydrocarbons are performed at temperatures ranging from 294 to 1400 K by OH absorption and laser induced fluorescence techniques in two different reactors: shock tube and flow reactor. It is found that OH has a tendency to add to the unsaturated CC bond, forming a relatively stable adduct. The thermal stability of these adducts is vital for a better understanding of the kinetics of olefins, poly-olefins, alkynes and other unsaturated components in real and surrogate fuel blends. In this work, the reaction rate coefficient of the reaction of hydroxyl radical with many olefins (butenes, pentenes, hexenes), di-olefins (butadienes, and pentadienes) and allyl radical are measured. A strong competition between H-abstraction and OH-addition pathways is seen particularly in the intermediate temperature window of ~ 400 to 900 K. All of these measured elementary reactions give new insights into the chemical kinetics of fuels and allow modelers to improve the predictive capability of their models. Second, measurements of the ignition delay times of propene, isobutene, 2-methylhexane and 2-methylbutanol in air are performed using a high-pressure shock tube. Details about multi-stage ignition and ignition delay dependence on various thermodynamic properties is investigated for these four hydrocarbons. We followed this with a correlation study of ignition delay times of fuel blends and real fuel streams. The main requirement of these correlations is that these should be predictive enough to compete with the predictive capabilities of detailed chemical kinetic models but at a much reduced computational cost. The obtained correlation scheme does not only predict ignition timing during CFD simulations but also other combustion properties such as low-temperature heat release timing and resulting temperature and pressure increases due to cool flame. A discussion on the weak dependence of high-temperature ignition delay times on the composition of real fuels is also presented, where universal Arrhenius type expressions of ignition delay times of gasoline, diesel and jet fuels are given.
42

Reactivity and Ignition Delay Measurements of Petroleum-based Fuels, Surrogate Fuels and Biofuels

AlAbbad, Mohammed A. 10 1900 (has links)
Energy demand is rapidly increasing due to the increase in population and rising living standards. Petroleum-based fuels account for the main source of energy consumed in the world. However, they are also considered to be the main source of the unwanted emissions to the atmosphere. In this context, chemical kinetic studies of combustion processes are essential for a better understanding of the underlying reactions and to achieve increased combustion efficiency and reduced pollutant emissions. In this study, ignition delay times, a global indicator of fuel reactivity, were measured for promising fuels for use in advanced combustion engines. Also, rate coefficients were measured for promising oxygenated hydrocarbons that can be used as additives to conventional fuels. Ignition delay time measurements of four primary reference fuel (PRF) blends, mixtures considered to be some of the simplest gasoline surrogates, were measured behind reflected shock waves to provide a large experimental dataset to validate PRF chemical kinetic models. The kinetic modeling predictions from four chemical kinetic models were compared with the experimental data. Ignition delay correlations were also developed to reduce the simulation cost of complicated models. Recently, naphtha, a low-octane distillate fuel, has been proposed as a low-cost refinery fuel. Likewise, a mid-octane blend which consists of low-octane (light and heavy naphtha) and high-octane (reformate) distillate fuels has been proposed to power gasoline compression ignition (GCI) engines. In this work, experimental and modeling studies were conducted on low and mid-octane distillate fuels (naphtha and GCI blend) and surrogate candidates to assess their autoignition characteristics for use in advanced internal combustion engines. Oxygenated molecules are considered to be promising additives to conventional fuels. Thermal decomposition of three esters (ethyl levulinate, ethyl propionate and diethyl carbonate ) and a five-member cyclic ketone (cyclopentanone) was investigated in this work. Laser absorption technique was employed to follow the reaction progress by measuring ethylene (C2H4) near 10.532 µm using a CO2 gas laser for the decomposition process of the three esters. The reaction progress of the decomposition of cyclopentanone was followed by monitoring CO formation using a quantum cascade laser at a wavelength near 4.556 µm.
43

Manufacturing and Instrumentation of an Open End Compressed Air Shock Tube

Ruiz, Josue O 01 December 2017 (has links)
Shock tubes have been used extensively to study shock wave structures and high speed flow features. The purpose of constructing this open end shock tube was to have the ability to produce shock waves in a laboratory setting but also understand the exit flow coming out which can be applied to future studies that are beyond the scope of this work. This undertaking would require that an open end shock tube be built and instrumented with PCB Integrated Circuit Piezoelectric (ICP) Pressure Sensor Model 113B24 that would then be connected to a PCB Model 482C05 Signal Conditioner with the purpose of measuring the the pressure jumps as well as the speed of the shock wave. The data was acquired using National Instruments NI PXIe-1071 chassis with a PXI 1088 Embedded Controller as well as three PXI 5114 digitizer cards with the Virtual Instrument coded using LabView. The data was written to a text file that was then transferred to MATLAB for post processing using a Savitzy-Golay filter to clean up the signal noise. The shock tube was driven using compressed air and a diaphragm burst was achieved through spontaneous rupture of a 0.003" Mylar diaphragm. The open shock tube built for this undertaking fits in a lab space and successfully produces a shock wave that propagates down the tube that exits at the open end to reproduce a blast wave. Additionally the available pressure sensors and DAQ were integrated into the shock tube to measure the different predicted shock structures in each run. The experimental runs at the exit of the shock tube demonstrate the expected exit flow features, but a flow visualization is necessary to get a better understanding of the exit flow
44

Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

Alquaity, Awad 01 November 2016 (has links)
With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control for increased efficiency and reduced emissions. Finally, a compact fast time-response time-of-flight mass spectrometer (TOFMS) was coupled to the shock tube through a pin-hole end-wall to enable timeresolved species concentration measurements. This diagnostic tool was demonstrated by investigating the decomposition of 1,3,5-trioxane over a wide range of shock conditions. Reaction rate coefficients were extracted by the best fit to the experimentally measured species time-histories. TOF-MS coupled to the shock tube is an ideal diagnostic tool for developing kinetic mechanisms for future fuels due to its ability to simultaneously measure several species during fuel pyrolysis/oxidation processes.
45

Investigation and Optimization of Connections in Timber Assemblies Subjected to Blast Loading

Viau, Christian 21 April 2020 (has links)
The majority of research on high strain-rate effects in timber structures has been limited to the study of the load-bearing members in isolation. Limited work has been conducted on timber connections and full-scale timber assemblies under blast loading, and these have generally been constrained to qualitative observations. In North America, the increasing prevalence of mid- and high-rise timber structures makes them susceptible to blast effects. In addition, questions remain on how to design and optimize these timber assemblies, including the connections, against blast loads, due in part to the limitations on comprehensive design provisions. The effects of far-field blast explosions were simulated using the University of Ottawa shock tube. A total of fifty-eight dynamic tests were conducted on connection-level and full-scale specimens. The research program aimed to investigate the behaviour of heavy-timber connections when subjected to simulated blast loads. The experimental results showed that connections with a main failure mechanism consisting of wood crushing experienced significant increases in dynamic peak load when compared to the static peak load. In contrast, connections where steel yielding and rupturing occurred experienced no statistically significant increase in dynamic peak load. Full-scale glulam specimens with bolted connections designed to yield via wood crushing and bolt bending performed better than those with overdesigned connections. Bolted connections which failed in splitting led to premature failure of the glulam assembly. Reinforcement with self-tapping screws allowed these bolted joints to fail in a combination of bolt yielding and wood crushing, and provided more ductility when compared to unreinforced specimens. Specially designed energy-absorbing connections significantly increased the energy dissipation capabilities of the timber assemblies. The basis of these connections was to allow for connection yielding while delaying failure of the wood member. This was achieved via elastoplastic connection behaviour, which effectively limited the load imparted onto the wood member. Based on the experimental results, limitations in the current Canadian blast provisions were highlighted and discussed. A two-degree-of-freedom blast analysis software was developed and validated using full-scale and connection-level experimental results and was found to adequately capture the system response with reasonable accuracy. Sensitivity analyses regarding the applicability of using single-degree-of-freedom analysis were presented and discussed.
46

Stoßwellenuntersuchungen und Modellierung der Pyrolyse von Pentafluorethan und 2-H-Heptafluorpropan / Shock Wave and Modeling Study of the Pyrolysis of Pentafluoroethane and 2-H-Heptafluoropropane

Tellbach, Elsa 13 December 2013 (has links)
No description available.
47

Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

Sajid, Muhammad Bilal 05 1900 (has links)
Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of acetylene. Furthermore, methane and acetylene sensors are developed for shock tube applications. The application of these sensors (along with an ethylene sensor) has been demonstrated to measure these species during the pyrolysis of n-pentane and iso-pentane.
48

On focusing of strong shock waves

Eliasson, Veronica January 2005 (has links)
Focusing of strong shock waves in a gas-filled thin test section with various forms of the reflector boundary is investigated. The test section is mounted at the end of the horizontal co-axial shock tube. Two different methods to produce shock waves of various forms are implemented. In the first method the reflector boundary of the test section is exchangeable and four different reflectors are used: a circle, a smooth pentagon, a heptagon and an octagon. It is shown that the form of the converging shock wave is influenced both by the shape of the reflector boundary and by the nonlinear dynamic interaction between the shape of the shock and the propagation velocity of the shock front. Further, the reflected outgoing shock wave is affected by the shape of the reflector through the flow ahead of the shock front. In the second method cylindrical obstacles are placed in the test section at various positions and in various patterns, to create disturbances in the flow that will shape the shock wave. It is shown that it is possible to shape the shock wave in a desired way by means of obstacles. The influence of the supports of the inner body of the co-axial shock tube on the form of the shock is also investigated. A square shaped shock wave is observed close to the center of convergence for the circular and octagonal reflector boundaries but not in any other setups. This square-like shape is believed to be caused by the supports for the inner body. The production of light, as a result of shock convergence, has been preliminary investigated. Flashes of light have been observed during the focusing and reflection process. / QC 20101126
49

Investigation of Formic Acid Chemistry and Ignition

Alsewailem, Ahmad 05 1900 (has links)
This thesis investigates the oxidation chemistry and ignition properties of formic acid (FA). The study reports experimental measurements of ignition delay time (IDT) and CO/CO2 time histories during FA oxidation in a shock tube. The initial concentration of FA was measured with a laser to minimize uncertainties arising from its low vapor pressure and tendency to form dimers. Shock tube experiments were carried out at two pressures, around 1.7 and 3.5 bar, and temperatures ranging from 1194 to 1658 K, with two equivalence ratios, 0.72 and 1.47. The results show a noticeable dependence of IDTs on temperature and pressure, while there was insignificant dependence on equivalence ratio. Six kinetic models for FA oxidation available in the literature were tested against the obtained data to evaluate their accuracy and suggest potential improvements. We found that 4 models performed well in predicting IDTs and CO/CO2 profiles with some overprediction at certain conditions. Sensitivity analysis revealed that the IDTs of FA are governed by unimolecular decomposition, H abstraction, and radical consumption (HOCO) reactions. The concentration of HO2 is higher at low temperatures, which is favorable for the system’s reactivity as it makes IDTs more sensitive to the reaction HOCHO + HO2 = H2O2 + HOCO. CO formation is controlled by two reactions: CO + OH = HOCO and HOCHO (+M) = CO + H2O, while the second reaction is more pronounced at high temperatures. Moreover, the dissociation of HOCO is faster at higher pressures, leading to higher initial CO concentrations. The formation of CO2 is determined by CO + OH = CO2 + H, while at higher temperatures, HOCHO (+M) = CO2 + H2 (+M) becomes more important, resulting in higher initial CO2 concentrations.
50

Infrared Laser Absorption Spectroscopy for Interference-free Sensing in Environmental, Combustion and Petrochemical Applications

Mhanna, Mhanna 04 1900 (has links)
Laser absorption spectroscopy has been a valuable technique for sensitive, non-intrusive, in-situ detection of gaseous and liquid phase target species. The infrared spectral region is specifically attractive as it provides opportunities for selective sensing of a multitude of species in various applications. This thesis explores techniques for interference-free sensing in the infrared region for environmental, combustion, and petrochemical applications. A mid-infrared laser-based sensor was designed to detect trace amounts of benzene using off-axis cavity-enhanced absorption spectroscopy and a multidimensional linear regression algorithm. This sensor achieved unprecedented detection limits, making it ideal for environmental and occupational pollution monitoring. Moreover, wavelength tuning and deep neural networks were employed to differentiate between the broadband similar-shaped absorbance spectra of benzene, toluene, ethylbenzene, and xylene isomers. Benzene sensing was enhanced by recent advancement in semiconductor laser technology, which enabled access to the long wavelength mid-infrared region through commercial distributed feedback quantum cascade lasers. The strongest benzene absorbance band in the infrared is near 14.84 μm, and thus was probed for sensitive benzene detection. Wavelength tuning with multidimensional linear regression were employed to selectively measure benzene, carbon dioxide, and acetylene. Cepstral analysis and wavelength tuning were used to develop a selective sensor for fugitive methane emissions. The sensor was proved to be insensitive to baseline laser intensity imperfections and spectral interference from other present species. In combustion studies, it is desirable to have a diagnostic technique that can detect multiple species simultaneously with high sensitivity, selectivity, and fast time response to validate and improve chemical kinetic mechanisms. A mid-infrared laser sensor was developed for selective and sensitive benzene, toluene, ethylbenzene, and xylenes detection in high-temperature shock tube experiments using deep neural networks. The laser was tuned near 3.3 μm, and an off-axis cavity-enhanced absorption spectroscopy setup was used to enable trace detection. Finally, a novel near-infrared laser-based sensor was developed for water-cut sensing in oil-water flow. The sensor was shown to be immune to the presence of salt and sand in the flow and to temperature variations over 25-60°C. This technique has significant advantages for well and reservoir management, where highly accurate water-cut measurements are required.

Page generated in 0.1022 seconds