Spelling suggestions: "subject:"shortcircuit current"" "subject:"shortcircuit current""
21 |
Estudo das características de células solares de silício monocristalino. / Study of monocrystalline silicon solar cells characteristics.Antonio Fernando Beloto 13 June 1983 (has links)
Foram desenvolvidos sistemas de medidas visando a caracterização de células solares de sílico monocristalino. Para isso, foram determinadas as características I x V no escuro para diferentes níveis de iluminação. Curvas de resposta espectral e capacitância em função da tensão inversa aplicada foram também obtidas. Foi feita uma avaliação do comportamento dessas células em função da temperatura e realizadas medidas de profundidade de junção utilizando-se três métodos distintos. Os principais parâmetros, que determinam o desempenho dessas células, foram obtidos boa concordância com a teoria e com os resultados apresentados na literatura. / Systems of measurements were developed for the characterization of single crystal silicon solar cells. For that, the curves I x V were measured in the dark and for different intensity of illumination. Curves of spectral response and of capacitance as a function of the reciprocal of the voltage were also measured. The behavior of the cells as a function of temperature was analysed and also measurements of junction depth were made by three different methods. Values for the parameters that characterize the cells were obtained, showing a good agreement with theoretical values and also with already reported values.
|
22 |
Napájecí zdroj elektrostatického odlučovače / Power supply of electrostatic separatorBroďák, Kamil January 2015 (has links)
The diploma thesis focuses on the problems of electric power precipitators. Due to their current dominant position, the work concentrates on the sources of single phase transformers operating at the frequency of 50 Hz controlled by thyristors. The first part describes the electrostatic precipitator and its principle. This is followed by a brief insight into the proposal for an electrostatic precipitator. The work also explains the high voltage source that is divided into a transformer with a rectifier and into a control box with power circuits and control circuits that provide the power supplied by a transformer. The work also offers an explanation of the HV source system that operates at different conditions. The last part suggests a proposal for cooling cabinet including thyristors, for power line control box resources, for a supply line and a line to the transformer.
|
23 |
EXPERIMENT AND MODELING OF COPPER INDIUM GALLIUM DISELENIDE (CIGS) SOLAR CELL: EFFECT OF AXIAL LOADING AND ROLLINGArturo Garcia (8848484) 15 May 2020 (has links)
<div>In this paper various applications of axial tensile load, bending load, and rolling loading has
been applied to a Copper Indium Gallium Diselenide (CIGS) Solar Cell to lean how it would affect
the solar cell parameters of: Open circuit voltage (Voc), Short circuit current, (Isc), Maximum power
(Pmax), and Efficiency (EFF), and Fill Factor (FF). These Relationships were found for with three
different experiments.
The first experiment the applies axial tensile stress is to a CIGS solar cell ranging from 0 to
200 psi with various strain rates: 0.0001, 0.001, 0.01, and 0.1 in/sec as well as various relaxation
time: 1min, 5min, and 10 min while the performance of solar cell is measured. The results of this
gave several trends couple pertaining the Voc . The first is that open circuit voltage increases
slightly with increasing stress. The second is the rate of increase (the slope) increases with longer
relaxation times. The second set of trend pertains to the Isc. The first is that short circuit current
generally is larger with larger stress. The second is there seems to be a general increase in the Isc
up to a given threshold of stress. After that threshold the Isc seems to decrease. The threshold stress
varies depending on strain rate and relaxation time.
The second set of experiments consisted of holding a CIGS solar cell in a fixed curved
position while it was in operational use. The radii of the curved cells were: 0.41, 0.20, 0.16, 0.13,
0.11, 0.094, and 0.082 m. The radii were performed for both concave and convex cell curvature.
The trends for this show a slight decrease in all cell parameters with decreasing radii, the exception
being Voc which is not effecting, the convex curvature causing a slightly faster decrease than the
concave. This set of experiments were also processed to find the trends of the single diode model
parameters of series resistance (Rs), shunt resistance (Rsh), dark current (I0), and saturation current
(IL), which agreed with the experimental results.
The second experiment consisted of rolling a CIGS solar cell in tensile (cells towards dowel.)
and compression (cells away from dowel) around a dowel to create internal damage. The diameter
of the dowels decreased. The dowel diameters were: 2. 1.75, 1.25, 1, 0.75, 0.5, and 0.25 inches.
This experiment showed similar trends as the bending one but also had a critical diameter of 1.75
in where beyond that damage much greater.
Finally a parametric study was done in COMSOL Multiphysics® to examine how changes
in the CIGS material properties of electron mobility (EM), electron life time, (EL), hole mobility
15
(HM), and Hole life time (HL) effect the cell parameters. The trends are of an exponential manner
that converges to a given value as the material properties increase. When EL, EM, HL are very
small, on the order of 10-4 times smaller than their accepted values, a transient like responses occurs.<br></div>
|
24 |
Charakterisierung von organischen Solarzellen an einem neu aufgebauten Laser-basierten DSR-MessplatzFey, Thomas 22 September 2015 (has links)
Die Physikalisch-Technische Bundesanstalt (PTB) unterstützt vielfältig die Gesellschaft, Wirtschaft und Wissenschaft. Eine ihrer Kernkompetenzen als das nationale Metrologie-Institut der Bundesrepublik Deutschland ist die Messtechnik. In diesem Sinne kalibriert die Arbeitsgruppe „Solarzellen“ der PTB
i. d. R. den Kurzschlussstrom unter Standardtestbedingungen (I_STC) von Referenzsolarzellen. Der I_STC von Referenzsolarzellen ist in Photovoltaik-Kalibrierketten bei der Bestimmung der Bestrahlungsstärke von zentraler Bedeutung und fließt signifikant in die Berechnung der Wirkungsgrad von Solarzellen und Solarmodulen ein.
Um den I_STC einer Solarzelle mit geringster Messunsicherheit zu bestimmen, wurde die Differential Spectral Responsivity (DSR)-Methode verwendet. Sie basiert auf der Messung der differentiellen spektralen Empfindlichkeit bei unterschiedlichen Bestrahlungsstärken. Anhand dieser kann die absolute spektrale Empfindlichkeit s(λ) unter Standardtestbedingungen sowie der I_STC berechnet werden. Da jedoch die Umgebungsbedingungen meistens von den STC abweichen, reichen letztere nicht zum umfassenden Vergleich der Wirkungsgrade in der Praxis aus. Um Einflussfaktoren (Temperatur, Bestrahlungsstärke, Winkelabhängigkeit,...) genauer untersuchen zu können, wurde im Rahmen dieser Arbeit an der PTB ein neuer Laser-basierter DSR-Messplatz aufgebaut und charakterisiert.
Mit dem neuen Messplatz wurden c-Si Referenzsolarzellen, organische Solarzellen auf Basis kleiner Moleküle sowie Farbstoffsolarzellen umfassend untersucht. Unter anderem wurden die elektrischen Leistungsparameter einer organischen Solarzelle (aktive Schicht: DCV5T-Me:C60) mit denen einer c-Si Solarzelle verglichen. Es zeigt sich, dass der Wirkungsgrad der organischen Solarzelle mit zunehmender Bestrahlungsstärke sinkt und mit zunehmender Temperatur steigt, während die c-Si Solarzelle ein gegensätzliches Verhalten aufweist.
Darüber hinaus wurde u.a. die Winkelabhängigkeit der zweiten organischen Solarzelle (aktive Schicht: C60:DCV5T-Me(3,3)) untersucht und mit den Resultaten einer c-Si Solarzelle verglichen. Diese Untersuchungen haben ergeben, dass die Winkelabhängigkeit des Kurzschlussstroms der organischen Solarzelle im Vergleich zu einer c-Si Solarzelle insbesondere zwischen 20° < ϑ < 60° eine „Super-Kosinus-Anpassung“ aufweist.
Ergänzend wurde an der PTB im Rahmen dieser Arbeit ein mobiler Messplatz für Outdoormessungen aufgebaut. Mit diesem konnten die mittels Indoor-Untersuchungen erhaltenen spektralen Empfindlichkeiten mit Outdoor-Messungen verglichen werden. Des Weiteren wurden spektrale Charakterisierungen der Himmelshalbkugel durchgeführt und Methoden für Korrekturen von Sekundärkalibrierungen untersucht.
|
25 |
Návrh transformační stanice pro vyvedení výkonu z fotovoltaické elektrárny / Project of Outgoing Transformer Unit for the Photovoltaic Power StationHanák, Miroslav January 2009 (has links)
This master’s thesis engages in project of outgoing transformer unit for the photovoltaic power station. It describes project and its design documentation what conducts to practising of construction. It has compared investing to more expansive transformer what has lower loss. It describes charges of operation’s transformer in twenty years. It leads project of cable low voltage. It compares whether is better to use aluminium or cupric cables. Project is led with respect for investment costs and minimum of operation loss.
|
26 |
Analýza účinků zkratového proudu v rozváděči / Analysis of effects of short-circuit current in switchgear cabinetProkop, Jan January 2015 (has links)
The work is focusing on dynamic effects of short-circuit currents, more precisely dynamic effects of short-circuit currents on switchgear cabinet (terminal box). The work was designated to a concrete construction type of two switchgear cabinets located on rotating machines via company Siemens Electric Machines Drásov s.r.o.. The switchgear cabinets are designed for non-explosive environment where the air is used as an insulating medium. The task was to determine how the device will behave during the three-phase short-circuit and three-phase short-circuit with earth/ground connection. The following programs were used for the calculations and simulations: Ansoft Maxwell 16.0, Ansoft Maxwell 2015 and ANSYS Workbench 16.0. By using these programs the effects of forces which acts on current paths in cabinet caused by the passage of short-circuit current were simulated, statically and also dynamically. Further the effects of pressure acting on cabinet frame during the arc short-circuit have been statically and dynamically simulated. All the results are summarized in the conclusion. Conclusion also contains the final evaluation of the functionality of both switchgear cabinets.
|
27 |
Analýza mechanického namáhání při zkratu ve vzduchem izolovaném rozváděči vn / Analysis of Mechanical Stress during Short Circuit in an Air-Insulated MV SwitchgearBártů, Jan January 2017 (has links)
This Master thesis is based on problems of force effects of the magnetic field of short-circuit current. Firstly, I analysed the force action of the three phase busbars during the three-pole short circuit. The analysis was performed in the Ansys Maxwell program and I verified the correctness of the analysis by numerical calculation. The second practical part was executed for ABB company. The main task was to analyse the force effects of the short-circuit current in the HV switchgear with focusing on the arms and contact system of the circuit breaker. The simulations of the following configurations were performed in more details: three configurations of the simplified VD4 circuit breaker, two types of VD4 circuit-breaker contact systems and a linear circuit breaker configuration model. The objective was to calculate the forces acting on the current path of the arms and contact system of the VD4 circuit breaker during the three-phase short-circuit and to simulate the effects of forces on these current parts. For modelling of individual assemblies, calculations and simulations I used: SolidWorks 2014, Ansys Maxwell 16.0 and Ansys Workbench 14.5 programs. With SolidWorks 2014 3D CAD software were modelled simplified assemblies of circuit breakers and contact systems. These systems were imported into the Ansys Maxwell software, where the force effects of the magnetic field of the short-circuit current were calculated. In Ansys Workbench programme was simulated the effect of forces on the current circuit breakers. Moreover, the final deformations of the materials (with respect to the mechanical properties of the structure) were plotted. The analysis of force effects of the magnetic field was performed for the specified static short - circuit current value.
|
28 |
Effects of carbon nanotubes on barrier epithelial cells via effects on lipid bilayersLewis, Shanta January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanotubes (CNTs) are one of the most common nanoparticles (NP) found in workplace air. Therefore, there is a strong chance that these NP will enter the human body. They have similar physical properties to asbestos, a known toxic material, yet there is limited evidence showing that CNTs may be hazardous to human barrier epithelia. In previous studies done in our laboratory, the effects of CNTs on the barrier function in the human airway epithelial cell line (Calu-3) were measured. Measurements were done using electrophysiology, a technique which measures both transepithelial electrical resistance (TEER), a measure of monolayer integrity, and short circuit current (SCC) which is a measure of vectorial ion transport across the cell monolayer. The research findings showed that select physiologically relevant concentrations of long single-wall (SW) and multi-wall (MW) CNTs significantly decreased the stimulated SCC of the Calu-3 cells compared to untreated cultures. Calu-3 cells showed decreases in TEER when incubated for 48 hours (h) with concentrations of MWCNT ranging from 4µg/cm2 to 0.4ng/cm2 and SWCNT ranging from 4µg/cm2 to 0.04ng/cm2. The impaired cellular function, despite sustained cell viability, led us to investigate the mechanism by which the CNTs were affecting the cell membrane. We investigated the interaction of short MWCNTs with model lipid membranes using an ion channel amplifier, Planar Bilayer Workstation. Membranes were synthesized using neutral diphytanoylphosphatidylcholine (DPhPC) and negatively charged diphytanoylphosphatidylserine (DPhPS) lipids. Gramicidin A (GA), an ion channel reporter protein, was used to measure changes in ion channel conductance due to CNT exposures. Synthetic membranes exposed to CNTs allowed bursts of currents to cross the membrane when they were added to the membrane buffer system. When added to the membrane in the presence of GA, they distorted channel formation and reduced membrane stability.
|
Page generated in 0.0625 seconds