• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cryogenic Etching of the Electroplating Mold for Improved Zone Plate Lenses

Larsson, Daniel January 2010 (has links)
<p>The fabrication of zone plate lenses that are used for focusing X-rays relies on nanofabrication techniques such as e-beam lithography, reactive ion etching, and electroplating. The circular grating-like zone plate pattern can have a smallest half-period, a so-called zone width, of down to 20 nm while it also needs to have a height that is 5 to 10 times the zone width to have good diffraction efficiency. This high aspect ratio structuring is a very challenging field of nanofabrication.</p><p>This diploma project has focused on improving the process step of fabricating the electroplating mold by cryo-cooling the polymer during the reactive ion etching with O<sub>2</sub>. The low temperature causes passivation of the sidewalls of the mold during etching which results in a more ideal rectangular profile of the high aspect ratio plating mold.</p><p>By etching at -100 °C, structures with highly vertical sidewalls and no undercut were realized. The experiments showed that there is a tradeoff between the anisotropy of the zone profile and the formation rate of polymer residue, so-called RIE grass. Through a proper choice of process parameters the grass could be completely removed without introducing any undercut.</p> / QC 20100414
2

Cryogenic Etching of the Electroplating Mold for Improved Zone Plate Lenses

Larsson, Daniel January 2010 (has links)
The fabrication of zone plate lenses that are used for focusing X-rays relies on nanofabrication techniques such as e-beam lithography, reactive ion etching, and electroplating. The circular grating-like zone plate pattern can have a smallest half-period, a so-called zone width, of down to 20 nm while it also needs to have a height that is 5 to 10 times the zone width to have good diffraction efficiency. This high aspect ratio structuring is a very challenging field of nanofabrication. This diploma project has focused on improving the process step of fabricating the electroplating mold by cryo-cooling the polymer during the reactive ion etching with O2. The low temperature causes passivation of the sidewalls of the mold during etching which results in a more ideal rectangular profile of the high aspect ratio plating mold. By etching at -100 °C, structures with highly vertical sidewalls and no undercut were realized. The experiments showed that there is a tradeoff between the anisotropy of the zone profile and the formation rate of polymer residue, so-called RIE grass. Through a proper choice of process parameters the grass could be completely removed without introducing any undercut. / QC 20100414

Page generated in 0.1176 seconds