• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signal peptidase specificity and substrate selection: influence of S1 and S3 substrate binding pocket residues on SPASE 1 cleavage site selection

Karla, Andrew 12 September 2005 (has links)
No description available.
2

Involvement of Signal Peptidase I in Streptococcus sanguinis Biofilm Formation

Aynapudi, Jessica 01 January 2016 (has links)
Biofilm accounts for 65%-80% of microbial infections in humans. Considerable evidence links biofilm formation to oral disease and consequently systemic infections. Eradication of biofilm-associated infections is important. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species in oral biofilm. It contributes to biofilm development in oral cavities and is one of the recognized causes of infective endocarditis. To study and identify biofilm genes in S. sanguinis, biofilm formation of 51 mutants was compared with the wild type SK36 strain using crystal violet (CV) staining in a microtiter plate. Confocal laser scanning microscopy (CLSM) and image analysis was done to compare biofilm formation by the mutant to the wild type SK36 strain. A biofilm mutant XG2_0351, encoding a type I signal peptidase (SPase I), was further investigated. SPase I cleaves proteins that are transported through secretory machinery and is necessary for the release of translocated preproteins from a cytoplasmic site of synthesis to extracytoplasmic/membrane destinations. S. sanguinis, like many Gram-positive bacteria, has multiple SPases I. The objective of this project is to investigate the distinctive role that SPase I plays in biofilm formation in S. sanguinis. Using a plate reader, the growth curves of the wild type strain SK36 and XG2_0351 were compared. The scanning electron microscope (SEM) was utilized to compare the cell surface morphologies. Coomassie staining was done to narrow the list of potential substrates of XG2_0351. CV staining and CLSM images indicated phenotypic differences between the SPase I mutant and SK36. The growth curves of XG2_0351 and SK36 showed no significant difference although SEM illustrated a difference in the cell surface morphologies. Coomassie staining illustrated a number of substrates that were present in SK36 but not XG2_0351. In addition bioinformatics was used to understand the gene function. In conclusion, XG2_0351 reduces biofilm formation in S. sanguinis but further research is necessary to elucidate the specific proteins that are involved. Clarifying the vii role that SPase I plays in reduced biofilm formation in S. sanguinis will give a better understanding of the biofilm formation mechanism.
3

Vliv glycinové smyčky na funkci "processing" peptidas mitochondriálního typu / Impact of the glycine-rich loop on the function of processing peptidases of the mitochondrial type

Kučera, Tomáš January 2014 (has links)
The majority of the mitochondrial proteins is synthetized on the cytosolic ribosomes in the form of the protein precursors bearing mitochondrion-targeting signal presequences. Once the protein precursor has reached the mitochondrial matrix the signal presequence is no longer necessary and is cleaved off by heterodimeric mitochondrial processing peptidase (MPP; α/β). Although the crystal structure of MPP is available, the MPP mechanism of function is still matter of discussion. An all atomic, non-restrained molecular dynamics (MD) simulation in explicit water was used to study in detail the structural features of the highly conserved glycine-rich loop (GRL) of the regulatory α-subunit of the yeast MPP. Wild-type and GRL-deleted MPP structures were studied both in the presence and absence of a substrate in the peptidase active site. Targeted MD simulations were employed to study the mechanism of substrate translocation from the GRL to the peptidase active site. We demonstrate that the natural conformational flexibility of the GRL is crucial for the substrate translocation process from outside the enzyme towards the MPP active site. We show that the α-helical conformation of the substrate is important not only during its initial interaction with MPP (i.e. substrate recognition), but also later, at...
4

Translocation des colicines de type ribonuclease à travers la membrane interne bacterienne / Translocation of nuclease colicins D and E3 through the inner membrane of E. coli

Chauleau, Mathieu 23 September 2011 (has links)
Les colicines sont des toxines antibactériennes d’Escherichia coli qui sont relâchées par les cellules productrices (colicinogènes) dans le milieu extracellulaire en réponse à des conditions de stress environnementaux. Les colicines D et E3 sont des RNases qui clivent respectivement les tRNAArg et le 16S RNA ribosomique. Les deux colicines parvenues au cytoplasme de la cellule cible provoquent ainsi la mort par inactivation de la machinerie de biosynthèse des protéines. L’import de ces deux colicines nécessite d’abord le détournement de deux systèmes cellulaires différents (FepA/TonB ou BtuB/Tol) de leur fonction physiologique, permettant leur translocation à travers la membrane externe. L’idée que par la suite la translocation à travers la membrane interne nécessite au préalable une étape de processing des colicines nucléases est ancienne, mais elle n’a jamais été démontrée formellement. Nos travaux ont permis de montrer qu’une coupure endoprotéolytique des deux colicines constitue une étape de « processing » essentielle de leur action toxique. Nous avons détecté la présence du domaine C-terminal catalytique des deux colicines dans le cytoplasme des cellules cibles préalablement exposées à la toxine. Les mêmes fragments processés (PF) ont été identifiés dans les cellules sensibles et dans les cellules immunes contre ces colicines, qui sont protégées par une protéine d’immunité spécifique, formant un complexe neutre avec le domaine catalytique. Nous avons démontré que la protéase essentielle de la membrane interne, FtsH, est nécessaire au processing des deux colicines pendant leur import. Nous avons montré aussi que la signal-peptidase LepB, une autre enzyme essentielle de la membrane interne, interagit directement avec le domaine central de la colicine D in vitro et ainsi elle est un facteur protéique spécifiquement nécessaire au processing de la colicine D. Cependant ce n’est pas l’activité catalytique de LepB qui est impliquée dans la toxicité de la colicine D, mais elle jouerait un rôle structural. LepB ainsi faciliterait probablement l’association de la colicine D avec la membrane interne en vue de la reconnaissance de la toxine par FtsH. Nous avons aussi montré que la protéase OmpT de la membrane externe est responsable d’une coupure endoprotéolytique alternative, qui refléte probablement son rôle bien connu dans le système de défense des bactéries contre les peptides anti-microbiens. Même si cette coupure in vitro permet de libérer le domaine catalytique des colicines D et E3, il est établit maintenant que la protéase OmpT n’est pas impliquée dans le processing des colicines durant leur import dans le cytoplasme. / Colicins are antibacterial toxins of Escherichia coli that are released into the extracellular medium in response to environmental stress conditions. Colicin D is an RNase that cleaves the anticodon loop of all four isoaccepting tRNAArg. Colicin E3 cleaves 16 S ribosomal RNA. Both colicins provoke cell death by inactivating the protein biosynthetic machinery. Colicin producer cells are protected against both endogenous and exogenous toxin molecules by the constitutive expression of a cognate immunity protein, which forms a tight heterodimer complex with the nuclease domain of the colicin. The import of both colicins first requires the “hijack” of some distinct functions of the target cell (namely the BtuB/Tol and FepA/TonB systems, respectively), this allowing their translocation across the outer membrane. It has long been suggested that the import of nuclease colicins requires protein processing during the translocation across the inner membrane; however it had never been formally demonstrated. Our work shows that the two different RNase colicins E3 and D undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms (PF) were identified in both colicin-sensitive cells and in cells immune to colicins, because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm
5

Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation.

Hamilton, A., Robinson, C., Sutcliffe, I.C., Slater, I., Maskell, D.J., Smith, K., Waller, A., Harrington, Dean J. January 2006 (has links)
Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (prtM138-213, with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (lgt190-685). Moreover, mucus production was significantly greater in both wild-type-infected and lgt190-685-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the lgt190-685 mutant did still exhibit signs of disease. In contrast, only the prtM138-213 mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the lgt190-685 mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted.

Page generated in 0.0502 seconds