• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

HOMOCYSTEINE-METHIONINE CYCLE IS A KEY METABOLIC SENSOR SYSTEM CONTROLLING METHYLATION-REGULATED PATHOLOGICAL SIGNALING - CD40 IS A PROTOTYPIC HOMOCYSTEINE-METHIONINE CYCLE REGULATED MASTER GENE

Gao, Chao January 2019 (has links)
Homocysteine-Methionine (HM) cycle produces a universal methyl group donor S-adenosylmethionine (SAM), a competitive methylation inhibitor S-adenosylhomocysteine (SAH), and an intermediate amino acid product homocysteine (Hcy). Elevated plasma levels of Hcy is termed as hyperhomocycteinemia (HHcy) which is an established risk factor for cardiovascular disease (CVD) and neural degenerative disease. We were the first to describe methylation inhibition as a mediating biochemical mechanism for endothelial injury and inflammatory monocyte differentiation in HHcy-related CVD and diabetes. We proposed metabolism-associated danger signal (MADS) recognition as a novel mechanism for metabolic risk factor-induced inflammatory responses, independent from pattern recognition receptor (PRR)-mediated pathogen-associated molecular pattern (PAMP)/danger-associated molecular pattern (DAMP) recognition. In this study, we examined the relationship of HM cycle gene expression with methylation regulation in human disease. We selected 115 genes in the extended HM cycle, including 31 metabolic enzymes and 84 methyltransferases (MT), examined their mRNA levels in 35 human disease conditions using a set of public databases. We discovered that: 1) HM cycle senses metabolic risk factor and controls SAM/SAH-dependent methylation. 2) Most of metabolic enzymes in HM cycle (8/11) are located in cytosol, while most of the SAM-dependent MTs (61/84) are located in the nucleus, and Hcy metabolism is absent in the nucleus. 3) 11 up-regulated, 3 down-regulated and 24 differentially regulated SAM/SAH-responsive signal pathways are involved in 7 human disease categories. 4) 8 SAM/SAH-responsive H3/H4 hypomethylation sites are identified in 8 disease conditions. We conclude that HM cycle is a key metabolic sensor system which mediates receptor-independent MADS recognition and modulates SAM/SAH-dependent methylation in human disease. We propose that HM metabolism takes place in cytosol and that nuclear methylation equilibration requires nuclear-cytosol transfer of SAM, SAH and Hcy. CD40 is a cell surface molecule which is expressed on antigen presenting cells such as monocyte, macrophage, dendritic cells and neutrophils. The costimulatory pair, CD40 and CD40L, enhances T cell activation and induce chronic inflammatory disease. Also, DNA hypomethylation on CD40 promotor induces inflammatory monocyte differentiation in chronic kidney disease. In order to figure out if CD40 is a prototypic HM cycle regulated master gene, RNA-seq analysis were performed for CD40+ and CD40- monocytes from mouse peripheral blood and 1,093 differentially expressed genes (DEGs) were selected from those two groups. All the DEGs modulate as much as 15 functional gene groups such as cytokines, enzymes and transcriptional factors. Furthermore, CD40+ monocytes activated trained immunity pathways especially in Acetyl-CoA generation and mevalonate pathway. In HM cycle, CD40 is a prototypic HM cycle regulated master gene to induce the most of the Hcy metabolic enzymes as well as MT, which can further modulate the methylation-regulated pathological signaling. / Biomedical Sciences
12

Neuronale Variabilität und die Grenzen der Signalerkennung

Neuhofer, Daniela 14 September 2010 (has links)
Ziel der vorliegenden Arbeit war es, die Auswirkungen von externen Störquellen und intrinsischer Variabilität auf die Verarbeitung und Erkennung von akustischen Signalen am Modellsystem der Feldheuschrecke Chorthippus biguttulus zu untersuchen. Damit sowohl die Gesangserkennung am sich verhaltenden Tier als auch die dieser Erkennung zugrunde liegende neuronale Verarbeitung untersucht werden konnte, wurde ein Weibchengesang verwendet, dessen zeitliches Muster durch zufällige Amplitudenmodulationen gestört wurde. Durch die Degradation mit verschiedenen Frequenzbändern konnte überprüft werden, ob bestimmte Modulationsfrequenzen die Signalerkennung stärker beeinflussen als andere. Mit zunehmender Störung der Gesangsstruktur kam es in den Verhaltenstests an Männchen zu einer Abnahme der Erkennungsleistung. Die Stärke der tolerierten Degradation war dabei in der Regel nicht unterschiedlich für die getesteten Degradationsbänder. Die Unterschiede in den neuronalen Antworten, welche entweder durch die artifizielle extrinsische Degradation oder durch interne Fehler in der auditorischen Verarbeitung verursacht wurden, konnten durch eine Spiketrain-Metrik quantifiziert werden. Diese Analyse zeigte, dass die Auswirkung der extrinsischen Signaldegradation von den Rezeptoren über die lokalen Interneurone zu den aufsteigenden Interneuronen abnahm, während es zu einem signifikanten Anstieg der intrinsischen Variabilität kam. Die Stärke der Degradation war dabei erneut nicht unterschiedlich für die getesteten Degradationsbänder. Durch die Bestimmung von neurometrischen Schwellen konnten die Grenzen der Signalerkennung der Männchen mit der Rauschtoleranz der einzelnen auditorischen Neurone verglichen werden. Die kritischen Degradationsstufen, die so ermittelt werden konnten, stimmten teilweise erstaunlich gut überein. Somit sind die Grenzen der Signalerkennung durch die Analyse der Antwortkapazitäten der ersten drei Verarbeitungsstufen relativ gut erklärbar. / The aim of this study was to investigate the effects of extrinsic and intrinsic noise sources on signal recognition and processing within the acoustic communication system of the grasshopper Chorthippus biguttulus. To test both - signal recognition of behaving animals and the underlying auditory processing mechanisms - a female song was used, whose temporal pattern was disturbed by random amplitude modulations. Due to the degradation with various modulation bands, it was possible to test if distinct modulation frequencies have more pronounced effects on signal recognition than others. Behavioural tests on males of Chorthippus biguttulus showed that progressive degradation of the song pattern induced a decrease in recognition performance. The strength of degradation tolerated generally was the same for different modulation bands. The differences between neuronal responses, which were either caused by the artificial extrinsic degradation or internal errors during auditory processing, could be quantified by a spiketrain metric. This analysis showed that the effect of extrinsic signal degradation was much more severe for receptors and local interneurons than for ascending interneurons, whereas there was a significant increase of intrinsic variability with higher levels of processing. The strength of the degradation was again not different for different modulation bands. Signal recognition could be compared with the noise tolerance of individual auditory neurons by determining neurometric thresholds. The average critical degradation levels, to some extend, matched the critical degradation level for behaviour. Thus, by means of analysing the response capacities of neurons from the first three levels of auditory processing, the limits of signal detection are relatively well explained.

Page generated in 0.0929 seconds