• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 58
  • 12
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Silicon nanowires for photovoltaic applications /

Parlevliet, David Adam. January 2008 (has links)
Thesis (Ph.D.)--Murdoch University, 2008. / Thesis submitted to the Faculty of Minerals and Energy. Includes bibliographical references (leaves 238-246)
2

Modeling of amorphous silicon/crystalline silicon heterojunction by commercial simulator

Ghosh, Kunal. January 2009 (has links)
Thesis (M.S.E.C.E.)--University of Delaware, 2008. / Principal faculty advisor: Stephen P. Bremner, Dept. of Electrical & Computer Engineering. Includes bibliographical references.
3

Development of high efficiency monocrystalline Si solar cells through improved optical and electrical confinement

Meemongkolkiat, Vichai. January 2008 (has links)
Thesis (Ph.D.)--Georgia Institute of Technology, 2008. / Adviser: Ajeet Rohatgi. Includes bibliographical references.
4

Silicon quantum dot superlattices in dielectric matrices: SiO2, Si3N4 and SiC

Cho, Young Hyun, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Silicon quantum dots (QDs) in SiO2 superlattices were fabricated by alternate deposition of silicon oxide (SiO2) and silicon-rich oxide (SRO), i.e. SiOx (x<2), and followed by high temperature annealing. A deposited SRO film is thermodynamically unstable below 1173oC and phase separation and diffusion of Si atoms in the amorphous SiO2 matrix creates nano-scaled Si quantum dots. The quantum-confined energy gap was measured by static photoluminescence (PL) using an Argon ion laser operating at 514.5 nm. The measured energy band gaps of crystalline Si QDs in SiO2 matrix at room temperature (300 K) show that the emission energies from 1.32 eV to 1.65 eV originating Si dot sizes from 6.0 nm to 3.4 nm, respectively. There is a strong blue-shift of the PL energy peak position with decreasing the quantum dot size and this shows the evidence of quantum confinement of our fabricated Si QDs in SiO2 matrix. The PL results indicate that the fabricated Si QDs in SiO2 matrix could be suitable for the device application such as top cell material for all-silicon tandem solar cells. Silicon QD superlattices in nitride matrix were fabricated by alternate deposition of silicon nitride (Si3N4) and silicon-rich nitride (SRN) by PECVD or co-sputtering of Si and Si3N4 targets. High temperature furnace annealing under a nitrogen atmosphere was required to form nano-scaled silicon quantum dots in the nitride matrix. The band gap of silicon QD superlattice in nitride matrix (3.6- 7.0 nm sized dots) is observed in the energy range of 1.35- 1.98 eV. It is about 0.3- 0.4 eV blue-shifted from the band gap of the same sized quantum dots in silicon oxide. It is believed that the increased band gap is caused by a silicon nitride passivation effect. Silicon-rich carbide (SRC, i.e. Si1-xCx) thin films with varying atomic ratio of the Si to C were fabricated by using magnetron co-sputtering from a combined Si and C or SiC targets. Off-stoichiometric Si1-xCx is of interest as a precursor to realize Si QDs in SiC matrix, because it is thermodynamically metastable when the composition fraction is in the range 0 < x < 0.5. Si nanocrystals are therefore able to precipitate during a post-annealing process. SiC quantum dot superlattices in SiC matrix were fabricated by alternate deposition of thin layers of carbon-rich silicon carbide (CRC) and SRC using a layer by layer deposition technique. CRC layers were deposited by reactive co-sputtering of Si and SiC targets with CH4. The PL energy band gap (2.0 eV at 620 nm) from 5.0 nm SRC layers could be from the nanocrystalline ??-SiC with Si-O bonds and the PL energy band gap (1.86 eV at 665 nm) from 6.0 nm SRC layers could be from the nanocrystalline ??-SiC with amorphous SiC clusters, respectively. The dielectric material for an all-silicon tandem cell is preferably silicon oxide, silicon nitride or silicon carbide. It is found that for carrier mobility, dot spacing for a given Bloch mobility is in the order: SiC > Si3N4 > SiO2. By ab-initio simulation and PL results, the band gap for a given dot size is in the order: SiC > Si3N4 > SiO2. However, the PL intensity for a given dot size is in the order: SiC < Si3N4 < SiO2.
5

Silicon quantum dot superlattices in dielectric matrices: SiO2, Si3N4 and SiC

Cho, Young Hyun, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Silicon quantum dots (QDs) in SiO2 superlattices were fabricated by alternate deposition of silicon oxide (SiO2) and silicon-rich oxide (SRO), i.e. SiOx (x<2), and followed by high temperature annealing. A deposited SRO film is thermodynamically unstable below 1173oC and phase separation and diffusion of Si atoms in the amorphous SiO2 matrix creates nano-scaled Si quantum dots. The quantum-confined energy gap was measured by static photoluminescence (PL) using an Argon ion laser operating at 514.5 nm. The measured energy band gaps of crystalline Si QDs in SiO2 matrix at room temperature (300 K) show that the emission energies from 1.32 eV to 1.65 eV originating Si dot sizes from 6.0 nm to 3.4 nm, respectively. There is a strong blue-shift of the PL energy peak position with decreasing the quantum dot size and this shows the evidence of quantum confinement of our fabricated Si QDs in SiO2 matrix. The PL results indicate that the fabricated Si QDs in SiO2 matrix could be suitable for the device application such as top cell material for all-silicon tandem solar cells. Silicon QD superlattices in nitride matrix were fabricated by alternate deposition of silicon nitride (Si3N4) and silicon-rich nitride (SRN) by PECVD or co-sputtering of Si and Si3N4 targets. High temperature furnace annealing under a nitrogen atmosphere was required to form nano-scaled silicon quantum dots in the nitride matrix. The band gap of silicon QD superlattice in nitride matrix (3.6- 7.0 nm sized dots) is observed in the energy range of 1.35- 1.98 eV. It is about 0.3- 0.4 eV blue-shifted from the band gap of the same sized quantum dots in silicon oxide. It is believed that the increased band gap is caused by a silicon nitride passivation effect. Silicon-rich carbide (SRC, i.e. Si1-xCx) thin films with varying atomic ratio of the Si to C were fabricated by using magnetron co-sputtering from a combined Si and C or SiC targets. Off-stoichiometric Si1-xCx is of interest as a precursor to realize Si QDs in SiC matrix, because it is thermodynamically metastable when the composition fraction is in the range 0 < x < 0.5. Si nanocrystals are therefore able to precipitate during a post-annealing process. SiC quantum dot superlattices in SiC matrix were fabricated by alternate deposition of thin layers of carbon-rich silicon carbide (CRC) and SRC using a layer by layer deposition technique. CRC layers were deposited by reactive co-sputtering of Si and SiC targets with CH4. The PL energy band gap (2.0 eV at 620 nm) from 5.0 nm SRC layers could be from the nanocrystalline ??-SiC with Si-O bonds and the PL energy band gap (1.86 eV at 665 nm) from 6.0 nm SRC layers could be from the nanocrystalline ??-SiC with amorphous SiC clusters, respectively. The dielectric material for an all-silicon tandem cell is preferably silicon oxide, silicon nitride or silicon carbide. It is found that for carrier mobility, dot spacing for a given Bloch mobility is in the order: SiC > Si3N4 > SiO2. By ab-initio simulation and PL results, the band gap for a given dot size is in the order: SiC > Si3N4 > SiO2. However, the PL intensity for a given dot size is in the order: SiC < Si3N4 < SiO2.
6

Silicon heterojunction solar cell and crystallization of amorphous silicon

Lu, Meijun. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: Robert W. Birkmire, Dept. of Materials Science & Engineering. Includes bibliographical references.
7

Triple junction amorphous silicon based flexible photovoltaic submodules on polyimide substrates /

Vijh, Aarohi. January 2005 (has links)
Dissertation (Ph.D.)--University of Toledo, 2005. / Typescript. "As partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering."
8

Spectroscope ellipsometry analysis of the component layers of hydrogenated amorphous silicon triple junction solar cells /

Stoke, Jason A. January 2008 (has links)
Thesis (M.S.)--University of Toledo, 2008. / Typescript. "Submitted as partial fulfillment of the requirements for Master of Science in Physics." "A thesis entitled"--at head of title. Bibliography: leaves 129-133.
9

Understanding of defect passivation and its effect on multicrystalline silicon solar cell performance

Nakayashiki, Kenta. January 2007 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Dr. Ajeet Rohatgi; Committee Member: Dr. Bernard Kippelen; Committee Member: Dr. Gabriel Rincon-Mora; Committee Member: Dr. Miroslav Begovic; Committee Member: Dr. W. Brent Carter.
10

Light Trapping in Monocrystalline Silicon Solar Cells Using Random Upright Pyramids

January 2014 (has links)
abstract: Crystalline silicon has a relatively low absorption coefficient, and therefore, in thin silicon solar cells surface texturization plays a vital role in enhancing light absorption. Texturization is needed to increase the path length of light through the active absorbing layer. The most popular choice for surface texturization of crystalline silicon is the anisotropic wet-etching that yields pyramid-like structures. These structures have shown to be both simple to fabricate and efficient in increasing the path length; they outperform most competing surface texture. Recent studies have also shown these pyramid-like structures are not truly square-based 54.7 degree pyramids but have variable base angles and shapes. In addition, their distribution is not regular -- as is often assumed in optical models -- but random. For accurate prediction of performance of silicon solar cells, it is important to investigate the true nature of the surface texture that is achieved using anisotropic wet-etching, and its impact on light trapping. We have used atomic force microscopy (AFM) to characterize the surface topology by obtaining actual height maps that serve as input to ray tracing software. The height map also yields the base angle distribution, which is compared to the base angle distribution obtained by analyzing the angular reflectance distribution measured by spectrophotometer to validate the shape of the structures. Further validation of the measured AFM maps is done by performing pyramid density comparison with SEM micrograph of the texture. Last method employed for validation is Focused Ion Beam (FIB) that is used to mill the long section of pyramids to reveal their profile and so from that the base angle distribution is measured. After that the measured map is modified and the maps are generated keeping the positional randomness (the positions of pyramids) and height of the pyramids the same, but changing their base angles. In the end a ray tracing software is used to compare the actual measured AFM map and also the modified maps using their reflectance, transmittance, angular scattering and most importantly path length enhancement, absorbance and short circuit current with lambertian scatterer. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014

Page generated in 0.0981 seconds