• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De novo peptide sequencing of spider silk proteins by mass spectrometry and discovery of novel fibroin genes

Hu, Xiaoyi 01 January 2004 (has links) (PDF)
Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In this study we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus , whose DNA coding sequences have not been reported. Based upon solubility differences in 8 M guanidine hydrochloride, it is demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and silver staining that the egg case silk is relatively complex at the molecular level, containing a large number of proteins with differing molecular weights. Protein components of egg case silk with a size about 100 kDa were obtained by a solubilization time course study, which indicates these proteins are likely to be embedded in the silk filament. Peptides in these 100 kDa proteins were released by tryptic in-gel and in-solution digestion. The peptides were sequenced using a MALDI tandem TOF mass spectrometer. Some of the de novo sequences were confirmed using a linear ion trap mass spectrometer equipped with a nanospray ion source. Combining the peptide sequences obtained, reverse genetics was employed to trace silk genes encoding proteins containing these de novo peptides. Three silk protein coding sequences were successfully discovered, which encode silk proteins named 3B, T1 and ECSP-1, respectively. 3B and T1 show the standard fibroin protein pattern. Amino acid repeat patterns were observed in these two silk clones. But the amino acid compositions of 3B and T1 show differences with the total amino acid composition of egg case silk, and also, the peptide sequences cannot be found in the primary amino acid sequences of 3B and T1. ECSP-1 protein represents one of the egg case silk proteins with a size of about 100 kDa. A number of peptide sequences obtained by mass spectrometric de novo sequencing were successfully located in ECSP-1's primary amino acid sequence. Sequence analysis demonstrates ECSP-1 represents a new class of silk proteins, with fibroin-like properties. The expression pattern of ecsp-1 is largely restricted to the tubuliform gland inside of the L. hesperus spider, with lower levels detected in the major and minor ampullate glands, which also confirms the identity of ECSP-1. It is also demonstrated that ECSP-1 assembles into higher aggregate structures through the formation of disulfide bonds. Peptide sequences from silk proteins from the Tarantula spider Grammostola rosea were also obtained. These sequences will be beneficial in obtaining genes encoding the silk from this spider species.
2

Fabrication of flexible, biofunctional architectures from silk proteins

Pal, Ramendra K 01 January 2017 (has links)
Advances in the biomedical field require functional materials and processes that can lead to devices that are biocompatible, and biodegradable while maintaining high performance and mechanical conformability. In this context, a current shift in focus is towards natural polymers as not only the structural but also functional components of such devices. This poses material-specific functionalization and fabrication related questions in the design and fabrication of such systems. Silk protein biopolymers from the silkworm show tremendous promise in this regard due to intrinsic properties: mechanical performance, optical transparency, biocompatibility, biodegradability, processability, and the ability to entrap and stabilize biomolecules. The unique ensemble of properties indicates opportunities to employ this material into numerous biomedical applications. However, specific processing, functionalization, and fabrication techniques are required to make a successful transition from the silk cocoon to silk-based devices. This research is focused on these challenges to form silk-based functional material and devices for application in areas of therapeutics, bio-optics, and bioelectronics. To make silk proteins mechanically conformable to biological tissues, the first exploration is directed towards the realization of precisely micro-patterned silk proteins in flexible formats. The optical properties of silk proteins are investigated by showing the angle-dependent iridescent behavior of micropatterned proteins, and developing soft micro-optical devices for light concentration and focusing. The optical characteristics and fabrication process reported in the work can lead to the future application of silk proteins in flexible optics and electronics. The microfabrication process of silk proteins is further extended to form shape-defined silk protein microparticles. Here, the specificity of shape and the ability to form monodisperse shapes can be used as shape encoded efficient cargo and contrast agents. Also, these particles can efficiently entrap and stabilize biomolecules for drug delivery and bioimaging applications. Next, a smart confluence of silk sericin and a synthetic functional polymer PEDOT:PSS is shown. The composite materials obtained have synergistic effects from both polymers. Silk proteins impart biodegradability and patternability, while the intrinsically conductive PEDOT:PSS imparts electrical conductivity and electrochemical activity. Conductive micro architectures on rigid as well as flexible formats are shown via a green, water-based fabrication process. The applications of the composite are successfully demonstrated by realizing biosensing and energy storage devices on rigid or flexible forms. The versatility of the approach will lead to the development of a variety of applications such as in bio-optics, bioelectronics, and in the fundamental study of cellular bio electrogenic environments. Finally, to expand the applicability of reported functional polymers and composites beyond the microscale, a method for silk nano-patterning via electron beam lithography is explored. The technique enables one-step fabrication of user defined structures at the submicron and nano-scales. By virtue of acrylate chemistry, a very low energetic beam and dosage are required to form silk nano-architectures. Also, the process can form both positive and negative features depending on the dosage. The fabrication platform can also form nano scale patterns of the conductive composite. The conductive measurements confirm the formation of conductive nanowires and the ability of silk sericin to entrap PEDOT:PSS particles in nanoscale features.

Page generated in 0.0569 seconds