1 |
On the Structure of the Domain of a Symmetric Jump-type Dirichlet FormSchilling, René L., Uemura, Toshihiro 16 June 2014 (has links) (PDF)
We characterize the structure of the domain of a pure jump-type Dirichlet form which is given by a Beurling–Deny formula. In particular, we obtain su cient conditions in terms of the jumping kernel guaranteeing that the test functions are a core for the Dirichlet form and that the form is a Silverstein extension. As an application we show that for recurrent Dirichlet forms the extended Dirichlet space can be interpreted in a natural way as a homogeneous Dirichlet space. For reflected Dirichlet spaces this leads to a simple purely analytic proof that the active reflected Dirichlet space (in the sense of Chen, Fukushima and Kuwae) coincides with the extended active reflected Dirichlet space. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
2 |
On the Structure of the Domain of a Symmetric Jump-type Dirichlet FormSchilling, René L., Uemura, Toshihiro January 2012 (has links)
We characterize the structure of the domain of a pure jump-type Dirichlet form which is given by a Beurling–Deny formula. In particular, we obtain su cient conditions in terms of the jumping kernel guaranteeing that the test functions are a core for the Dirichlet form and that the form is a Silverstein extension. As an application we show that for recurrent Dirichlet forms the extended Dirichlet space can be interpreted in a natural way as a homogeneous Dirichlet space. For reflected Dirichlet spaces this leads to a simple purely analytic proof that the active reflected Dirichlet space (in the sense of Chen, Fukushima and Kuwae) coincides with the extended active reflected Dirichlet space. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0781 seconds