• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Structure of the Domain of a Symmetric Jump-type Dirichlet Form

Schilling, René L., Uemura, Toshihiro 16 June 2014 (has links) (PDF)
We characterize the structure of the domain of a pure jump-type Dirichlet form which is given by a Beurling–Deny formula. In particular, we obtain su cient conditions in terms of the jumping kernel guaranteeing that the test functions are a core for the Dirichlet form and that the form is a Silverstein extension. As an application we show that for recurrent Dirichlet forms the extended Dirichlet space can be interpreted in a natural way as a homogeneous Dirichlet space. For reflected Dirichlet spaces this leads to a simple purely analytic proof that the active reflected Dirichlet space (in the sense of Chen, Fukushima and Kuwae) coincides with the extended active reflected Dirichlet space. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
2

On the Structure of the Domain of a Symmetric Jump-type Dirichlet Form

Schilling, René L., Uemura, Toshihiro January 2012 (has links)
We characterize the structure of the domain of a pure jump-type Dirichlet form which is given by a Beurling–Deny formula. In particular, we obtain su cient conditions in terms of the jumping kernel guaranteeing that the test functions are a core for the Dirichlet form and that the form is a Silverstein extension. As an application we show that for recurrent Dirichlet forms the extended Dirichlet space can be interpreted in a natural way as a homogeneous Dirichlet space. For reflected Dirichlet spaces this leads to a simple purely analytic proof that the active reflected Dirichlet space (in the sense of Chen, Fukushima and Kuwae) coincides with the extended active reflected Dirichlet space. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.092 seconds