• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Propriétés électroniques et thermoélectriques des hétérostructures planaires de graphène et de nitrure de bore / Electronic and thermoelectric properties of graphene/boron nitride in-plane heterostructures

Tran, Van Truong 26 November 2015 (has links)
Les excellentes propriétés électroniques, thermiques et mécaniques du graphène confèrent à ce matériau planaire (bi-dimensionnel) un énorme potentiel applicatif, notamment en électronique. Néanmoins, ce matériau présente de sérieux inconvénients qui pourraient limiter son champ d'applications. Par exemple, sa structure de bandes électronique sans bande interdite rend difficile le blocage du courant dans un dispositif. De plus, pour les applications thermoélectriques, sa forte conductance thermique est aussi une forte limitation. Il y a donc beaucoup de défis à relever pour rendre ce matériau vraiment utile pour des applications. Cette thèse porte sur l'étude des propriétés électroniques et thermoélectriques dans les hétérostructures planaires constituées de graphène et de nitrure de bore hexagonal (BN). Différentes configuration de ce nouveau matériau hybride permettent de moduler la bande interdite, la conductance thermique et le coefficient Seebeck. Cette étude a été menée au moyen de calculs atomistiques basés sur les approches des liaisons fortes (TB) et du modèle à constantes de force (FC). Le transport d'électrons et de phonons a été simulé dans le formalisme des fonctions de Green hors équilibre. Les résultats montrent que, grâce à la modulation de la bande interdite, des transistors à base d'hétérostructures de BN et de graphène peuvent présenter un très bon rapport courant passant / bloqué d'environ 10⁴ à 10⁵. En outre, nous montrons l'existence d'états quantiques hybrides à l'interface zigzag entre le graphène et le BN donnant lieu à des propriétés de transport électronique très intéressantes. Enfin, ce travail montre qu'en agençant correctement des nano-flocons de BN sur les côtés d'un nanoruban de graphène, la conductance des phonons peut être fortement réduite alors que l'ouverture de bande interdite conduit à un accroissement important du coefficient Seebeck. Il en résulte qu'un facteur de mérite thermoélectrique ZT plus grand que l'unité peut être réalisé à température ambiante. / Graphene is a fascinating 2-dimensional material exhibiting outstanding electronic, thermal and mechanical properties. Is this expected to have a huge potential for a wide range of applications, in particular in electronics. However, this material also suffers from a strong drawback for most electronic devices due to the gapless character of its band structure, which makes it difficult to switch off the current. For thermoelectric applications, the high thermal conductance of this material is also a strong limitation. Hence, many challenges have to be taken up to make it useful for actual applications. This thesis work focuses on the theoretical investigation of a new strategy to modulate and control the properties of graphene that consists in assembling in-plane heterostructures of graphene and Boron Nitride (BN). It allows us to tune on a wide range the bandgap, the thermal conductance and the Seebeck coefficient of the resulting hybrid nanomaterial. The work is performed using atomistic simulations based on tight binding (TB), force constant (FC) models for electrons and phonons, respectively, coupled with the Green's function formalism for transport calculation. The results show that thanks to the tunable bandgap, it is possible to design graphene/BN based transistors exhibiting high on/off current ratio in the range 10⁴-10⁵. We also predict the existence hybrid quantum states at the zigzag interface between graphene and BN with appealing electron transport. Finally this work shows that by designing properly a graphene ribbon decorated with BN nanoflakes, the phonon conductance is strongly reduced while the bandgap opening leads to significant enhancement of Seebeck coefficient. It results in a thermoelectric figure of merit ZT larger than one at room temperature.
12

Structure et propriétés de carbones anisotropes par une approche couplant analyse d’image et simulation atomistique / Structure and properties of anisotropic carbons by an approach coupling image analysis and atomistic simulation

Farbos, Baptiste 02 December 2014 (has links)
Des techniques combinées d'analyse/synthèse d'images et de simulation atomistique ont permis d’étudier la nanostructure/-texture de matériaux carbonés anisotropes et denses de type pyrocarbone (PyC) laminaire hautement texturé. Des représentations atomiques d’un PyC laminaire rugueux tel que préparé (AP) ainsi que d’un PyC laminaire régénéré AP et après plusieurs traitements thermiques (HT) ont été reconstruites pour mieux caractériser ces matériaux. Ces modèles comportent des domaines graphéniques de quelques nanomètres, joints entre eux par des lignes de défauts formées de paires de cycles à 5 et 7 carbones dans le plan et par des dislocations vis et des atomes tétravalents entre les plans. Les modèles les plus ordonnés ont des domaines plus étendus et un plus faible taux de connexions inter-plan. Les propriétés mécaniques et thermiques prédites à partir de ces modèles sont proches de celles du graphite et augmentent avec la cohérence intra-plan et la densité de connexions inter-plans. Des modèles de graphène polycristallins ont aussi été générés. Ils sont apparus, du point de vue structural et des propriétés mécaniques, très proches des feuillets de carbones des PyCs. Ils ont permis d'étudier la réorganisation structurale se produisant au cours du HT : formation de lignes de défauts, réparation de lacunes, … Il s'agit d'un premier pas vers l'étude de la graphitation des PyCs. La méthode de reconstruction a enfin été adaptée à l'étude de l'évolution structurale d'un graphite au cours de son irradiation par les électrons. Cela a permis d'observer à l'échelle atomique la création et la propagation des défauts au cours de l'irradiation. / Combined images analysis/synthesis techniques and atomistic simulation methods have allowed studying the nanostructure/-texture of anisotropic dense carbons of the highly textured laminar pyrocarbon (PyC) type.Atomic representations of an as-prepared (AP) rough laminar PyC as well as a regenerative laminar PyC AP and after several heat treatments (HT) were reconstructed to better characterize these materials.The models contain nanosized graphene domains connected between them by line defects formed by pairs of rings with 5 and 7 carbons inside layers and by screw dislocations and fourfold atoms between layers. The most ordered models have larger domains and a lower percentage of connections between the layers.Mechanical and thermal properties predicted from these models are close to those of graphite and increase with the coherence inside layers and the density of connections between layers.Models of polycrystalline graphene were also generated, showing structure and mechanical properties very close to those of the carbon layers extracted from PyCs. The structural reorganization occurring during the HT of such materials was studied: thinning of line defects and vacancy healing were observed. This represents a first step towards the study of the graphitization of PyCs.The reconstruction method was eventually adapted to study the structural evolution of a nuclear-grade graphite during its irradiation by electrons, allowing us to observe how defects are created and propagate during irradiation.
13

Etude par simulations et calculs atomistiques, de la formation de dislocations aux défauts de surface dans un cristal de silicium soumis à des contrainte

Godet, Julien 24 September 2004 (has links) (PDF)
Dans cette thèse, nous avons étudié au moyen de simulations atomistiques, la nucléation des dislocations à partir de marche de surface dans un cristal de silicium soumis à des contraintes. Afin de déterminer le potentiel interatomique le mieux approprié à cette étude, nous avons comparé les potentiels semi-empiriques de Stillinger-Weber (SW), Tersoff et EDIP avec des méthodes ab initio sur des calculs de cisaillement homogène {111} <110> du silicium massif, et d'énergies de défauts d'empilement généralisés sur les plans {111}. Les calculs ab initio montrent que la déformation se localise dans les plans du shuffle set, et pour de fortes déformations, les liaisons covalentes de ces plans deviennent métalliques. Pour notre étude, nous avons choisi le potentiel SW qui représente le mieux ces propriétés de cisaillement. A l'aide des potentiels interatomiques, principalement le potentiel SW, nous avons modélisé un cristal de silicium comportant des marches de surface que nous avons soumis à diverses orientations de contraintes. Nous avons montré que<br />les marches sont des sites privilégiés pour l'initiation de la plasticité.<br />L'analyse des déformations montre la nucléation de dislocations, en<br />particulier de type 60°, qui ont glissé systématiquement dans des plans du shuffle set. De plus, le type de dislocation nucléée dépend de la contrainte de scission résolue le long des plans de glissement et de la contrainte de Peierls. L'absence de cisaillement précurseur de la nucléation indique un couplage relativement faible entre tension et cisaillement des plans de glissement, contrairement aux métaux. Ce mécanisme de nucléation a été validé par un calcul ab initio, où une dislocation 60° a été nucléée dans un plan du shuffle set. Cependant, l'activation de ces sources est difficile pour les marches de faible hauteur. Finalement, nous avons montré que les liaisons pendantes de surface facilitent la rupture/recombinaison des liaisons atomiques<br />nécessaires à la nucléation.

Page generated in 0.1742 seconds