• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 24
  • 19
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 23
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Numerical Simulations Of Void Growth In Ductile Single Crystals

Thakare, Amol G 01 1900 (has links)
The failure mechanism in ductile materials involves void nucleation, their growth and subsequent coalescence to form the fracture surface. The voids are generated due to fracture or debonding of second phase particles or at slip band intersections. The triaxial stress field prevailing around a crack tip and in the necking region strongly influences the growth of these voids. In the initial stages of deformation, these microscale voids are often sufficiently small so that they exist entirely within a single grain of a polycrystalline material. Further, single crystals are used in high technology applications like turbine blades. This motivates the need to study void growth in a single crystal while investigating ductile fracture. Thus, the objectives of this work are to analyze the interaction between a notch tip and void as well as the growth and coalescence of a periodic array of voids under different states of stress in ductile FCC single crystals. First, the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals is studied. To this end, 2D plane strain finite element simulations are carried out under mode I, small scale yielding conditions, neglecting elastic anisotropy. In most of these computations, the orientation of the FCC single crystal is chosen so that notch lies in the (010) plane, with notch front along the [101] direction and potential crack growth along [101]. This orientation has been frequently observed in experimental studies on fracture of FCC single crystals. Three equivalent slip systems are considered which are deduced by combining three pairs of 3D conjugate slip systems producing only in-plane deformation. Attention is focused on the effects of crystal hardening, ratio of void diameter to spacing from the notch on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between slip shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. However, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. In order to examine the effect of crystal orientation, computations are performed with an orientation wherein the three effective slip systems are rotated about the normal to the plane of deformation. A strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Further, in order to study the synergistic, cooperative growth of multiple voids ahead of the notchtip, an analysis is performed by considering a series of voids located ahead of the tip. It is found that enhanced void growth occurs at higher load levels as compared to the single void model. Next, the growth and coalescence of a periodic array of cylindrical voids in a FCC single crystal is analyzed under different stress states by employing a 2D plane strain, unit cell approach. The orientation of the crystal studied here considers [101] and [010] crystal directions along the minor and major principal stress directions, respectively. Three equivalent slip systems, similar to those in the notch and void simulations are taken into account. Fringe contours of plastic slip and evolution of macroscopic hydrostatic stress and void volume fraction are examined. A criterion for unstable void growth which leads to onset of void coalescence is established. The effects of various stress triaxialities, initial void volume fraction and hardening on void growth and coalescence is assessed. It is observed that plastic slip activity around the void intensifies with increase in stress triaxiality. The macroscopic hydrostatic stress increases with deformation, reaches a peak value and subsequently decreases rapidly. An increase in stress triaxiality enhances the macroscopic hydrostatic stress sustained by the unit cell and promotes void coalescence. The stress triaxiality also has a profound effect on the shape of the void profile. The values of critical void volume fraction and critical strain, which mark onset of void coalescence, decrease within crease in stress triaxiality. However, the onset of void coalescence is delayed by increase in hardening and decrease initial void volume fraction.
52

Role of Excess Fe in Pristine and Substituted Fe Chalcogenide Superconductors

Cherian, Dona January 2014 (has links) (PDF)
Fe chalcogenides : The discovery of superconductivity in Fe based compounds trig- gered an intense research activity in this field with significant importance given to material synthesis. As a result, numerous materials falling into four major classes and sharing similarities in physical properties were synthesized and investigated. In spite of subtle differences, all of them share many common features like crystal symmetry, magnetic ground state, close resemblance in phase diagram etc. Fe super- conductors are broadly classified into Fe pnictides (with Fe − pnictogen layer) and Fe chalcogenides (with Fe − chalcogen layer) in which the binary Fe chalcogenides possess the simplest crystal structure. The distinct magnetic and superconducting properties make them interesting candidates for research. Detailed study on such systems demand high quality single crystals. This thesis discusses single crystal growth and properties of Fe1+yTe1−xSex. Struc- tural, magnetic, superconducting and thermal properties of pristine and substituted compounds are explored. A characteristic feature associated with binary chalco- genides is the presence of excess Fe in the interstitial sites represented by y in the chemical formula. By fine tuning the composition, the effect of interstitial Fe on various physical properties can be analyzed. The current work deals with the influence of interstitial excess Fe on the structural, magnetic and superconducting properties of the parent compound Fe1+yTe and Se substituted Fe1+yTe1−xSex. The results are organized into eight chapters; an outline of each chapter is given below. Chapter 1 gives an introduction to the broad field of Fe superconductors. A de- tailed literature review providing comparison of Fe pnictides with chalcogenides is included. The background of the current work is discussed with reference to the im- portant aspects of crystal structure and its relation to the ordered ground states. An overview of the important theories on magnetic ordering and superconducting pair- ing is provided. In the later part, a generic phase diagram along with the individual phase diagrams of important systems are discussed. This is followed by a discus- sion of the characteristic properties of iron chalcogenides and different methods of bulk synthesis. The chapter is concluded with a note on the motivation behind the present work. Chapter 2 discusses the crystal growth techniques and experimental methods used in the present work. The basic working principles are briefly explained. Chapter 3 provides a detailed discussion of the single crystal growth procedure, its customization and basic characterization. Single crystals of all compositions un- der discussion are grown by a modified horizontal Bridgman method. Material preparation, growth parameters and overall temperature profile of crystal growth process are described. Single crystalline nature of the as-grown crystals is con- firmed with Laue scattering technique. All crystals show tetragonal symmetry at room temperature. The approximate crystal orientation is deduced by indexing the X-ray diffraction pattern of the cleaved crystals. The diffraction patterns exhibit a set of (00l) peaks. A detailed composition analysis is performed on the samples. The sample properties are very sensitive to composition and careful estimation is per- formed by conducting repeated measurements at multiple points on the samples under study. Chapter 4 deals with superconducting and magnetic properties of Fe1+yTe0.5Se0.5. Single crystals of two different Fe concentration, y=0.04 and 0.09 are grown in which the concentration of Se and Te are maintained close to 0.5. Among binary Fe chalcogenides, half substituted iron telluride shows the highest TC (15 K) at ambient pressure. Accordingly, this composition is chosen to evaluate the role of Fe concentration in modulating the superconducting behavior. Two different batches of both the samples are grown, one set containing small amounts of impurity phases and the other, representing a pure primary phase. Resistivity measurements performed on both compositions, y=0.04 and 0.09, show onset of superconductivity near 15 K. In the normal state above TC, the temperature derivative of resistivity dρ/dT changes from positive to negative as the excess Fe concentration rises. At higher Fe concentrations, a log 1/T divergence is discernible in the normal state. The contribution of interstitial Fe to superconductivity has been analyzed using magnetization measurement techniques. An increase in the width of superconducting transition is seen in all measurements as the Fe content increases. The superconducting volume fraction estimated from susceptibility data demonstrates that high concentration of Fe is not favorable to superconductivity. The upper and lower critical field are esti- mated from electric resistivity data (in applied magnetic field) and magnetization isotherms respectively. Comparison of the lower critical field between two compo- sitions strengthens the argument that higher excess Fe leads to suppression of super- conductivity. The second set of crystals with impurity phases reveals an anomalous magnetization peak near 125 K. The results from resistivity, DC magnetization and ac susceptibility are compared. Chapter 5 addresses the influence of excess Fe on the ordered ground state. The antiferromagnetic parent compound, Fe1+yTe single crystals, are also grown using the same procedure. It is proposed that excess Fe occupying the interstitial sites possess local moments which could interact with the magnetic phases. In an at- tempt to understand their magnetic properties in detail, single crystals are grown with y=0.06, 0.09, 0.11, 0.12, 0.13 and 0.15. Fe1+yTe undergoes magnetostructural transition at TN=67 K. As the concentration of Fe varies from 0.06 to 0.13, a marked suppression of TN occurs from 67 K to 56 K. Moreover, a single first order transi- tion is seen to split into two at the critical concentration, y=0.12. The derivative plot of magnetization and specific heat data clearly illustrate two well-separated peaks. The two transitions are denoted as TN=57 K and TS=46 K. TN here is identified as a second order transition and TS as a first order transition. The second order transi- tion is evident from the λ-like nature of the peak in the specific heat measurement. The first order transition is associated with a large thermal hysteresis in the heat- ing and cooling cycle. Raw data from the heat capacity calorimeter gives a clear hint towards the first order nature of TS. As the composition of Fe rises further, the multiple transitions subside and disappear. For higher concentration, y=0.15, a sin- gle continuous phase transition is observed. Impurity free, pure phase is noticed in most of the samples as evident in powder X-ray diffraction and bulk magneti- zation measurements. The thermal data of various compositions are analyzed and compared. Electrical resistivity data clearly reveals the shift in phase transition and the presence of multiple transitions. Unlike Fe1+yTe1−xSex, all compositions here display similar behavior above TN, irrespective of the concentration of excess Fe. Chapter 6 devotes special emphasis to the evolution of structural and magnetic properties of the critical composition, Fe1.12Te where multiple transitions are ob- served. The low temperature structure of the crystal is studied in detail using syn- chrotron powder X-ray diffraction. The data in the vicinity of the two transitions, TN and TS are carefully analyzed. The room temperature crystal structure belongs to tetragonal symmetry with P4/nmm space group, where it is paramagnetic. As the sample is cooled to just below TN, a magnetostructural transition occurs from tetragonal to orthorhombic space group Pmmn. Below TN, the XRD pattern of the tetragonal (200) peak splits into (200) and (020) representing an orthorhombic distortion. The second transition is observed at TS where the orthorhombic struc- ture undergoes a monoclinic distortion, to P21/m. Below TS, a mixed phase of or thorhombic and monoclinic structures are present. The powder diffraction studies are supplemented with thermodynamic measurements. From specific heat analy- sis, the different contributions and the change in entropy across the transitions are estimated. Linear thermal expansion study has confirmed the two structural transi- tions. The changes occurring in lattice parameters, bond distances, bond angles and unit cell volume as a function of temperature are calculated using powder pattern refinement. Synchrotron data, linear thermal expansion and thermodynamic mea- surement results all point to strong magnetostructural coupling in this material. A temperature-composition phase diagram is formulated using results obtained from different Fe compositions. Transition temperature is plotted as a function of excess Fe content, highlighting its role in determining the structural and magnetic phases in Fe1+yTe. Chapter 7 deals with the magnetic and superconducting properties of Se substi- tuted Fe1+yTe1−xSex. Single crystals are grown by carefully varying the concen- tration of Se from x=0.02 to 0.25 while keeping the nominal composition of excess Fe more or less same. In this work, focus is given to Fe-rich, selenium substituted compositions. The intention is to explore how Se substitution affects the multiple transitions observed in Fe1.12Te. At 2% Se substitution, the split peaks are evident with a slight shift in temperature. The temperature interval between the two tran- sitions decreases in comparison to the pristine compound. For further increases in Se concentration, instead of two well separated peaks, a weak broad hump is ob- served. For compositions with x >0.10, long range magnetic ordering is suppressed. As x increases above 0.15 the electrical resistivity drops indicating the onset of su- perconductivity. However, in the composition range 0.15 ≤ x ≤ 0.25, neither long range magnetic order nor bulk superconductivity is present. Alternately, weak magnetic transitions above the superconducting transition are visible. The transport and magnetic properties are similar to that observed in Fe1.09Te0.5Se0.5. By tuning the Se composition in Fe-rich samples, the magnetic and structural transitions, originally seen in the parent compound are suppressed. The emergence of superconductivity is also discussed. The last section of the chapter provides the modified phase diagram as a function of Se concentration, combining all compositions discussed in the thesis. This gives a detailed description of Fe chalcogenides in the composition range, x=0 to 0.5 with special emphasis on Fe rich samples. The different regions in the phases diagram describe the peculiar properties of Fe chalcogenides. Chapter 8 concludes the thesis with general conclusions pertaining to various observations made in the different chapters. Prospects for future work are briefly outlined.
53

Decaimento de potencial de superfície em monocristais de naftaleno / Surface potential decay on naphtalene single crystals

Giacometti, José Alberto 10 August 1977 (has links)
Usando a técnica de decaimento do potencial de superfície e de correntes termo estimuladas, foi investigado em cristais de naftaleno, o movimento de cargas elétricas injetadas por uma descarga corona. Os resultados obtidos nas medidas de decaimento, foram explicados satisfatoriamente usando um modelo teórico de transporte de cargas, na presença de armadilhas rasas e profundas. A partir desse modelo foram calculadas: a mobilidade modulada dos portadores, o tempo de captura das armadilhas profundas e estimada a sua seção de captura. Nas medidas de corrente termo-estimuladas, foram identificadas as armadilhas rasas e profundas e determinada as suas profundidades energéticas. / Using the method of surface potential decay, and thermal stimulated currents, it was possible to study the motion of electrical charges, injected in naphthalene single crystals, by a negative corona discharge in the air. The results obtained in the measurements of the decay, were explained by using a theoretical model of transport of charges in the presence of shallow and deep traps. With the help of this model, the trap modulated mobility of the carriers, the trapping time of the deep traps, and the capture cross section were calculated. In the measurements of thermal stimulated currents, it was possible to identify the deep and shallow traps and also to calculate their activation energies.
54

Croissance hydrothermale de monocristaux isotypes du quartz-alpha, étude des propriétés physiques et recherche de nouvelles solutions solides avec des oxydes du bloc p (Ge, Sn) et du bloc d (Mn, V, Ti) / Hydrothermal growth of isotypes of alpha-quartz single crystals, study of the physical properties and research of new solid solutions with oxides of p block (Ge, Sn) and d block (Mn, V, Ti)

Clavier, Damien 08 October 2015 (has links)
Dans le domaine des cristaux piézoélectriques, le quartz est l'un des plus employés dans l'industrie électroniques pour des applications comme oscillateurs ou dans le domaine temps-fréquence. Le quartz-alpha SiO2 montre une décroissance de ses propriétés au-delà de 250°C, une transition de phase alpha-beta à 573°C et un faible coefficient de couplage électromécanique k autour de 8%. Bien que ses propriétés d'optique non-linéaire soient bien connues, son faible coefficient chi2 ne lui permet pas d'être utilisé dans des dispositifs doubleurs de fréquence. L'objectif de cette étude est d'augmenter la distorsion structurale et la polarisabilité de ce matériau en substituant une partie des atomes de silicium par des atomes plus volumineux tels que le germanium ou d'autres éléments. Afin de faire croitre des cristaux de taille centimétrique, la technique hydrothermale a été employée dans des autoclaves hautes pressions. Des cristaux de quartz-alpha de type Si(1-x)GexO2 ont été réalisés sur des germes de quartz-alpha SiO2 (001). Des cristaux volumineux avec différentes teneurs en germanium ont été obtenus puis analysés par spectroscopie infrarouge et par EPMA. Les propriétés piézoélectriques et d'optique non-linéaire ont été mesurées sur ces cristaux montrant une augmentation des propriétés physiques. Puis des croissances cristallines avec des atomes plus volumineux que le germanium ont été réalisées afin d'en augmenter davantage les propriétés physiques. Des substitutions par les éléments suivants ont été entreprises : Mn, V, Ti, et Sn / In the field of piezoelectric crystals, quartz is one of the widely used materials in industry for electronic device application as oscillators for the time-frequency domain. alpha-Quartz SiO2 shows a decrease of its piezoelectric properties above 250°C, an alpha-quartz to beta-quartz phase transition at 573°C and a low electromechanical coupling factor of about 8%. Although its nonlinear optics properties are well known, its low chi2 coefficient prevent it to be used in frequency doubling devices. The goal of this study is to increase the structural distortion and the polarizability of this material by substituting part of the silicon atoms with larger atoms such as germanium or other elements. In order to grow centimeter-size single crystals we use hydrothermal methods in high-pressure autoclaves. Crystal growth of mixed alpha-quartz Si(1-x)GexO2 crystals was successfully performed on pure alpha-quartz SiO2 (001) seeds. Large crystals with different germanium content were obtained and analyzed by infrared spectroscopy and EPMA. Piezoelectric and nonlinear optical properties were measured on these crystals, which exhibit a improved physical properties. Then crystal growths with larger elements than germanium were performed in order to further improve their physical properties. Substitution by the following elements: Mn, V, Ti and Sn were investigated.
55

Graphene chemistry: Synthesis and modulation

January 2012 (has links)
This thesis investigates the chemistry of graphene from its basic synthesis to further modulation of its structure, geometry and surface chemical functional groups. A series of wet chemistry and dry chemistry experiments were performed. The wet chemistry includes the diazonium salt functionalization, graphene oxidation and reduction, nanotube unzipping chemistry, graphite intercalation and exfoliation. The dry chemistry includes chemical vapor deposition and solid carbon source synthesis of graphene, the control of domain size and stacking order, graphene hydrogenation and lithographically patterned graphene superlattices. With all these chemical approaches, graphene's electrical and optical properties, solubility in organic solvents, crystallography, and chemical reactivity were carefully investigated and discussed. In addition to the fundamental chemistry of graphene, the bio- and environmental impact of this new material was also taken into consideration and investigated.
56

Growth, Transport, Magnetic And Thermal Studies On Single Crystals Of Pr1-xPbxMnO3

Padmanabhan, B 04 1900 (has links)
Mixed valence manganites with the perovskite structure R1-xAxMnO3 (where R = La, Nd, Pr and A = Ba, Ca, Sr, Pb) have been a popular subject of contemporary research because of their interesting physical properties such as competing magnetic orders, metal-insulator transitions and colossal magnetoresistance. A complex interplay between structure, electronic and magnetic properties results in rich phase diagrams involving various metallic, insulating and magnetic phases. A review of the literature related to rare-earth managnites clearly reveals that the systems with Pb as a divalent dopant are relatively less explored. This may be due to the volatile nature of lead based compounds which are used as precursors for preparing these systems. This has motivated us to take up research on Pb doped rare earth manganites. This thesis is divided into eight chapters. The first introductory chapter gives a brief review of the work on manganites which have already been reported in the literature following which the motivation for carying out the present investigation is given. The second chapter deals with technical details of various instruments used in the present reasearch work. The third chapter is related to growth of single crystals, their preliminary characterization, magnetization and resistivity studies. Single crystals of Pr1-xPbxMnO3 are grown by flux technique for different compositions. Crystals are characterized by energy dispersive x-ray analysis (EDAX) and inductively coupled plasma atomic emission spectroscopy (ICPAES) for compositional analysis. Magnetization and resistivity studies are carried out on Pr1-xPbxMnO3 for three compositions viz. x = 0.2, 0.23 and 0.3. The magnetization vs. temperature plots show that all the three compositions undergo a transition from paramagnetic to ferromagnetic state. The magnetization in the low temperature ferromagnetic region obeys Bloch`s law. The susceptibility in the paramagnetic region is fitted to Curie Weiss law. Deviation of susceptibilty from Curie Weiss law, a feature observed in all the three crystals has been attributed to formation of ferromagnetic clusters at ~ 250 K. The cluster formation has its implications on all other properties in the temperature range from TC to 250 K where TC is the magnetic transition temperature. Resistivity measurements are carried out on the same three compositions. The x = 0.2 and 0.23 compositions undergo a transition from paramagnetic insulating to ferromagnetic insulating phases. The x = 0.3 composition shows a metal – insulator transition at nearly 35 K above TC. Chapter 4 describes the critical behaviour of Pr1-xPbxMnO3 for two compositions, viz. x = 0.23 and 0.3. For critical studies, magnetization vs. field measurements are carried out in the temperature range TC ± 10 K. Using modified Arrott plots and Kouvel-Fisher method the critical exponents and precise value of TC are obtained. The x = 0.23 composition shows results which indicate a conventional second order phase transition shown by a 3D Heisenberg ferromagnet. It also obeys the universal scaling behaviour. However, the x = 0.3 composition shows deviation from this behaviour. Hence to probe further into the nature of magnetic transition of this compound the effective critical exponents are calculated as a function of reduced temperature ε (=(T-TC)/TC). Based on the behaviour of effective exponents the nature of the transition in the x = 0.3 composition is described in detail. The unconventional ordering is attributed to presence of possible magnetic frustration in the system. In chapter 5 the resistivity and magnetoresistance behaviour of the x = 0.23 and 0.3 crystals are discussed. Initially the nature of plots of temperature and field variation of resistivity are described for both the cases. Detailed measurements are carried out at the magnetic transition region. The analysis is carried out in terms of critical scattering behaviour at the transition region. The zero field resistivity is analyzed in terms of theory of Fisher and Langer, while the magnetoresistance is fitted to scaling theory at the critical region developed by Balberg and Helman. It is seen that the x = 0.23 crystal shows a critical behaviour in resistivity for zero field as well as in magnetoresistance close to TC. However, the behaviour of the x = 0.3 composition is more complex. A simpler critical scattering theory alone cannot explain its large negative magnetoresistance. Chapter 6 contains the EPR studies on the x = 0.23 and 0.3 compositions. Analysis is carried out in the paramagnetic region. The EPR signals are fitted to a modified Dysonian equation. The intensity, linewidth, and asymmetry parameter are obtained as a function of temperature from fitting. The parameters are obtained till 210 K for both compositions. The intensity is fitted to a Curie Weiss law. The linewidth shows a “bottleneck” mechanism and is proportional to conductivity. Hence it is fitted to activated behaviour. In addition, a secondary signal develops at low fields from 240 K and is present till 200 K in both the compositions. This is explained by means of phase separation. In chapter 7 the specific heat of the x = 0.23 and 0.3 compositions are discussed. The measurements are carried out from 2 to 300 K in zero field and also in the presence of 3 Tesla magnetic field. The analysis is carried out in two separate sections. The first section deals with the low temperature analysis from 2 to 80 K where apart from the usual lattice, electron and magnetic terms, presence of Schottky anomaly is also discussed. The Schottky peak occurs at a relatively higher temperature of around 40 K. Due to presence of higher order lattice terms the Schottky effect is not easily discernible. It is extracted only from fitting. In the second section, the specific heat associated with ferromagnetic – paramagnetic transition is extracted. The lattice term in the entire temperature range from 10 to 300 K except at the transition region is fitted to Einstein function. The magnetic specific heat is obtained by subtracting the Einstein specific heat from the total specific heat. The change in entropy due to magnetic transition is also calculated for both compositions. In chapter 8 the general conclusions derived from the work presented in this thesis are summarized along with the scope for future work in this system.
57

The high pressure synthesis, crystal growth and physical properties of transition metal perovskites

Marshall, Luke Gordon 02 March 2015 (has links)
The perovskite structure has an incredible versatility that results in myriad compounds with varied and eccentric behaviors. Perovskite oxides have been extensively studied and used for over 60 years. In order to expand on our already thorough knowledge of these compounds, it is necessary to use modern and creative experimental techniques. High-pressure synthesis and high oxygen-gas pressure annealing techniques are used to synthesize oxygen stoichiometric RNiO₃ (R = lanthanide). The particularly rich phase diagram of this compound allows for the study of the crossover from localized to itinerant electronic behavior and from an enhanced Pauli to a Curie-Weiss law paramagnetism. Single crystals of RFeO₃ are grown in order to analyze the spin canting in these antiferromagnetic samples. The size of the rare earth-cation is used to tune the magnitude of octahedral-tilt distortions. This tuning allows distinguishing between the two possible drivers for spin canting and weak ferromagnetism in these compounds, the octahedral-tilt-dependent single-ion anisotropy and the octahedral-tilt-independent Dzyaloshinskii-Moriya interaction. Although it is a fluoride compound, KCuF₃ has been used as an analogue to transition-metal oxide perovskites such as LaMnO₃ because of the similarity of their orbital ordering. Through the use of high-temperature neutron diffraction, it is shown that the orbital ordering and Jahn-Teller distortion in this compound are not lifted at the predicted temperature. Another mechanism for orbital ordering is identified. La₂[subscript-x] Sr [subscript x] CuO₄ has long been of interest as the progenitor system of the highTc superconductors. Despite having an exceedingly well-studied phase diagram in the over-doped region of its superconducting dome, little is known about this system in the region x > 0.3 because of the difficulty of synthesizing fully oxygen-stoichiometric samples. With high-oxygen-gas-pressure annealing and high-pressure synthesis, the completion of the phase diagram up to x = 1.0 is attempted. Finally, like many iridates, post-Perovskite CaIrO₃ exhibits a very strong spinorbit coupling of its 5d electrons. Because its magnetism is very weak, traditional methods to measure the magnitude of its orbital moment and spin-orbit coupling, such as neutron powder diffraction, are not viable. In order to address this issue, direct measurement of the orbital moments was conducted by using x-ray absorption spectroscopy and x-ray magnetic circular dichroism techniques. / text
58

Effet des contraintes électriques et magnétiques sur des cristaux simples ferroélectriques et céramiques / Effect of electric and magnetic stresses on ferroelectric single crystals and ceramics

Ramanatha Dayalu, Anand Theerthan 05 December 2012 (has links)
La présence de charges libres a des conséquences considérables sur les propriétés diélectriques des matériaux. Pour mettre en évidence ces contributions, nous avons étudié l’influence de contraintes électriques et magnétiques sur des monocristaux de BaTiO3 dopé Fer et de KTiOPO4 (KTP). Dans BaTiO3, l’application d’un champ magnétique perturbe le mécanisme de pertes diélectriques résultant de mécanismes polaroniques. Dans le KTP c’est la localisation des ions K+ qui est perturbée par un champ électrique comme nous l’avons démontré en étudiant la séparation des raies de résonances piézoélectriques. Dans une deuxième partie, nous avons synthétisé et étudié la polarisation de phosphates de composition BaFeTi(PO4)3 and BiFe2(PO4)3. Cependant, l’ion Bi3+ n’est jamais positionné sur son site d’inversion, ce qui est prometteur. Enfin, nous avons étudié la spinelle Co3O4 par spectroscopie diélectrique et RPE et nous avons montré l’induction d’un état polaire sous l’effet d’un champ magnétique. / The mobility of free charges and its localization mechanism has considerable effect on the dielectric properties of the materials. Therefore single crystal of Fe doped BaTiO3 and KTiOPO4 (KTP) which have predominantly electronic and ionic conductivity respectively were studied under external stresses like electric and magnetic field. The application of external magnetic field affects the hopping of electrons which lead to tuning of polaron losses in BaTiO3 whereas in case of KTP localization of K+ ions give rise to splitting of piezoelectric resonance and it can be tuned by external electric field. In the second part new phosphates of formula BaFeTi(PO4)3 and BiFe2(PO4)3 were synthesized to look for polarization property. However Bi3+ ions are not localized on their inversion symmetry site which is promising. Finally spinel Co3O4 was investigated under dielectric and Electron Paramagnetic Resonance spectroscopy which reveal an induction of polar state under external magnetic field.
59

Decaimento de potencial de superfície em monocristais de naftaleno / Surface potential decay on naphtalene single crystals

José Alberto Giacometti 10 August 1977 (has links)
Usando a técnica de decaimento do potencial de superfície e de correntes termo estimuladas, foi investigado em cristais de naftaleno, o movimento de cargas elétricas injetadas por uma descarga corona. Os resultados obtidos nas medidas de decaimento, foram explicados satisfatoriamente usando um modelo teórico de transporte de cargas, na presença de armadilhas rasas e profundas. A partir desse modelo foram calculadas: a mobilidade modulada dos portadores, o tempo de captura das armadilhas profundas e estimada a sua seção de captura. Nas medidas de corrente termo-estimuladas, foram identificadas as armadilhas rasas e profundas e determinada as suas profundidades energéticas. / Using the method of surface potential decay, and thermal stimulated currents, it was possible to study the motion of electrical charges, injected in naphthalene single crystals, by a negative corona discharge in the air. The results obtained in the measurements of the decay, were explained by using a theoretical model of transport of charges in the presence of shallow and deep traps. With the help of this model, the trap modulated mobility of the carriers, the trapping time of the deep traps, and the capture cross section were calculated. In the measurements of thermal stimulated currents, it was possible to identify the deep and shallow traps and also to calculate their activation energies.
60

Caracterização dos monocristais Cs2NaAIF6:Cr3+ e Cs2NaGaF6:Fe3+ por meio de ressonância paramagnética eletrônica / Characterization of Cs2NaAIF6:Cr3+ and Cs2NaGaF6:Fe3+ single crystals by electron paramagnetic resonance

Tedesco, Julio Cesar Guimarães, 1973- 22 August 2006 (has links)
Orientador: Antonio Manoel Mansanares / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-07T05:32:29Z (GMT). No. of bitstreams: 1 Tedesco_JulioCesarGuimaraes_M.pdf: 2257382 bytes, checksum: 5ce80fd32f944476c7b03fe5dfa792e1 (MD5) Previous issue date: 2006 / Resumo: O crescente estudo em materiais com largas bandas e absorção óptica e luminescência é devido à possibilidade de usá-los como fonte e radiação sintonizável. Os monocristais Cs2NaAlF6:Cr 3+e Cs2NaGaF6:Fe 3+ apresentam tais propriedades e, naturalmente, algumas propriedades físicas, tais como a estrutura cristalina, são aspectos decisivos para a atividade óptica nestes sistemas e devem ser melhor conhecidas. Este trabalho apresenta a caracterização dos monocristais Cs2NaAlF6 (dopado com 1% e Cr 3+) e Cs2NaGaF6 ( dopado em 1% e 10% e Fe3+) por meio de ressonância paramagnética eletrônica (Electron Paramagnetic Resonace - EPR). Nestes compostos, o íon Cr 3+(Fe3+) substitui o íon Al3+(Ga 3+) em dois sítios não-equivalentes com simetria axial com respeito ao eixo cristalográfico c. Os resultados obtidos permitem o estudo dos principais aspectos dos sítios de ocupação dos dopantes, tais como geometria e intensidade do campo cristalino, suas transições magnéticas mais prováveis. Os dados experimentais foram obtidos com um espectrômetro comercial de EPR operando em banda X à temperatura ambiente. Os espectros foram obtidos em diferentes orientações (direções) da amostra com respeito ao campo magnético aplicado em uma larga faixa angular. Os parâmetros espectrais (campo e ressonância, amplitude e largura de linha e ressonância) foram determinados pelo método dos mínimos quadrados ajustados com derivadas e lorentzianas, onde o número e linhas foi escolhido por inspeção visual. Com os campos e ressonância extraídos os espectros e a hamiltoniana do sistema, foi possível encontrar os parâmetros e campo zero ( D , a e F ) e as componentes o tensor g que melhor reproduzem o comportamento experimental. Devido ao elevado desvio no ajuste de alguns parâmetros espectrais (amplitude e largura de linha de ressonância) e à elevada dependência da intensidade das transições com o alinhamento a amostra na cavidade, foi possível determinar somente o módulo dos valores dos parâmetros de campo zero D, a e F. Além isto, os dados experimentais permitiram calcular, em alguns casos, somente valores limites os parâmetros e campo zero a e F. Consideramos serem necessárias medidas sob baixas temperaturas e a utilização e outra técnica, como ENDOR, para uma determinação mais precisa (além dos sinais) dos parâmetros citados, assim como a quantidade de dopante em cada sítio de ocupação / Abstract: The interest in materials with large bands of absorption and luminescence is due to the possibility of their applications as tunable solid state lasers. The crystals Cs2NaAlF6:Cr3+ and Cs2NaGaF6:Fe3+ present these properties and , naturally, some of their physical characteristics, such as the crystal field , are decisive for their optical activity and should be better investigated. This work presents a characterization of Cs2NaAlF6:Cr 3+single crystal (doped with 1%) an Cs2NaGaF6:Fe 3+single crystals ( doped with 1% an 10%) using electron paramagnetic resonance (EPR). In these compounds, the Cr3+(Fe3+) ions substitute Al3+ (Ga 3+) ions in two non-equivalent sites with axial symmetry with respect to the c crystallographic axis. The obtained results allow the study of the main aspects of the sites occupied by Cr3+(Fe 3+) ions, such as their geometry and intensity of crystal fiel. A commercial EPR spectrometer operating at X-ban frequencies and room temperature has been employed. Spectra at different orientations of the sample with respect to the applied magnetic field have been obtained for a large range of angles. The spectral parameters (resonance field , amplitude an linewidth) were determined from least square fits of the derivative of the Lorentzian lines. The number of lines in each spectrum was chosen by visual inspection. Using the resonance fields an the Hamiltonian of system, it was possible to find the zero fiel parameters that better reproduce the experimental behavior. Due to the large inaccuracy in the fitting an the large epen ence of transitions intensity on the sample alignment, it was not possible to determine the sign of the zero field parameters, only their magnitude. The experimental data permitted to calculate, in some cases, only the upper limit of the magnitude of a an F . We consider that studies at low temperature an the use of others techniques, like ENDOR, are necessary to increase the accuracy in the determination of the parameters (include their signs), as well as the determination of the amount of oping in each site / Mestrado / Ressonancia Magnetica e Relaxamento na Materia Condensada ; Efeitos Mosbauer ; Corr. Ang. Pertubada / Mestre em Física

Page generated in 0.0604 seconds