• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical synthesis of heparan sulfate oligosaccharides for use in single molecule fluorescence analysis

Dalton, Charlotte January 2016 (has links)
Heparan sulfate (HS) is a cell-surface sulfated polysaccharide that binds to multiple proteins and has been implicated in cancer, viral infection and Alzheimer's disease. Due to the heterogeneity of HS, the structural requirements for protein binding are ill- defined. Chemical synthesis of structurally-defined HS oligosaccharides, which are tunable in terms of length, order of monosaccharides and sulfation pattern, is required for the investigation of HS-protein binding. Single molecule methods have been utilised in biophysics to study dynamic processes and can allow observation of rare events which would be 'averaged out' in ensemble measurements. Access to fluorescently labelled HS oligosaccharides should allow investigation of interactions with proteins at the single molecule level using methods such as single molecule FRET, providing a method complementary to NMR studies (ensemble) and X-ray crystallography (non-dynamic).This thesis presents the development of a method for the fluorescent labelling of a chemically synthesised HS disaccharide utilising a reducing-end amine tag. Analysis of the fluorescence properties of the labelled disaccharide at ensemble and single molecule level indicated no perturbation of the fluorophore when attached to the sugar. Fluorescence correlation spectroscopy measurements of the fluorescent HS disaccharide with the protein FGF-1 showed no binding, which is attributed to the low concentration (1 nM) of disaccharide required in the experiment. Additional work is presented in this thesis on the development of a method for atom-specific 13C labelling of HS oligosaccharides, which has been initiated by synthesis of a 13C labelled L-iduronate monosaccharide and a 13C labelled disaccharide. New strategies for the synthesis of HS oligosaccharides based on orthogonal thioglycoside-based glycosylations employing S-benzoxazolyl and S-thiazolyl donors have been investigated. Development of a chemoselective glycosylation strategy for HS oligosaccharide synthesis utilising a 'super-disarmed' [2.2.2] L-iduronic lactone is presented.
2

Aggregation of alpha-synuclein using single-molecule spectroscopy

Iljina, Marija January 2017 (has links)
The aggregation of alpha-synuclein (αS) protein from soluble monomer into solid amyloid fibrils in the brain is associated with a range of devastating neurodegenerative disorders such as Parkinson’s disease. Soluble oligomers formed during the aggregation process are highly neurotoxic and are thought to play a key role in the onset and spreading of disease. Despite their importance, these species are difficult to study by conventional experimental approaches owing to their transient nature, heterogeneity, low abundance and a remarkable sensitivity of the oligomerisation process to the chosen experimental conditions. In this thesis, well-established single-molecule techniques have been utilised to study the aggregation and oligomerisation of αS in solution.
3

How the lysine riboswitch folds

McCluskey, Kaley A. January 2015 (has links)
To respond to rapidly-changing stresses in their environment, bacterial cells must be able to sense a variety of chemical cues and respond to them by activating the relevant genes. The lysine riboswitch is a short RNA motif, located just upstream of a gene encoding a lysine biosynthesis protein, that suppresses the expression of that gene when sufficient lysine is present in the cell. It acts by binding a lysine monomer in a region called the aptamer, which in turn rearranges an adjacent domain called the expression platform, sequestering the ‘start' sequence of the gene and preventing it from being transcribed. In this thesis, the lysine riboswitch's ligand-binding transition is studied using single-molecule fluorescence microscopy, optical tweezers, and a hybrid optical force/fluorescence technique. Förster Resonance Energy Transfer (FRET) is used with a fluorescently-labeled aptamer to show that it has a previously-undescribed, partially-folded structural state with enhanced ligand affinity compared to the unfolded structure. The Mg²⁺ dependence of the transition between these states is shown to resolve existing debates in the literature about the sensitivity of the riboswitch. The kinetics of the folding transition are explored using FRET, optical force, and hybrid ‘Fleezers' to map the free energy landscape of ligand binding and show that the ligand itself promotes transitions into the aptamer's folded state, a so-called ‘induced fit' mechanism rare among riboswitches. Finally, high-resolution optical tweezers are used to explore the link between the aptamer's secondary structure (the sequence of paired nucleotides) and its tertiary structure (three-dimensional folding) to illuminate the role of ligand binding in gene regulation, which depends on the equilibrium between competing secondary structures. Hybrid biophysical techniques like optical force/fluorescence microscopy are shown to be indispensable for addressing all the states in the reaction pathways of complex biomolecules like riboswitches and for discriminating between multiple levels of structure formation and interaction with the environment. Not only do the results presented here shed light on the RNA folding problem, particularly the role of tertiary structure in determining the minimum-energy configuration of an RNA sequence, but they could have implications for biomedical research, as the lysine riboswitch has already been shown to be a potential target for next-generation antibiotics.
4

DNA origami structures for artificial light-harvesting and optical voltage sensing

Hemmig, Elisa Alina January 2018 (has links)
In the past decade, DNA origami self-assembly has been widely applied for creating customised nanostructures with base-pair precision. In this technique, the unique chemical addressability of DNA can be harnessed to create programmable architectures, using components ranging from dye or protein molecules to metallic nanoparticles. In this thesis, we apply DNA nanotechnology for developing novel light-harvesting and optical voltage sensing nano-devices. We use the programmable positioning of dye molecules on a DNA origami plate as a mimic of a light-harvesting antenna complex required for photosynthesis. Such a structure allows us to systematically analyse optimal design concepts using different dye arrangements. Complementary to this, we use the resistive-pulse sensing technique in a range of electrolytes to characterise the mechanical responses of DNA origami structures to the electric field applied. Based on this knowledge, we assemble voltage responsive DNA origami structures labelled with a FRET pair. These undergo controlled structural changes upon application of an electric field that can be detected through a change in FRET efficiency. Such a DNA-based device could ultimately be used as a sensitive voltage sensor for live-cell imaging of transmembrane potentials.
5

In vitro, in silico and in vivo studies of the structure and conformational dynamics of DNA polymerase I

Sustarsic, Marko January 2016 (has links)
DNA polymerases are a family of molecular machines involved in high-fidelity DNA replication and repair, of which DNA polymerase I (Pol) is one the best-characterized members. Pol is a strand-displacing polymerase responsible for Okazaki fragment synthesis and base-excision repair in bacteria; it consists of three protein domains, which harbour its 5’-3' polymerase, 3’-5’ exonuclease and 5’ endonuclease activities. In the first part of the thesis, we use a combination of single-molecule Förster resonance energy transfer (smFRET) and rigid-body docking to probe the structure of Pol bound to its gapped-DNA substrate. We show that the DNA substrate is highly bent in the complex, and that the downstream portion of the DNA is partly unwound. Using all-atom molecular dynamics (MD) simulations, we identify residues in the polymerase important for strand displacement and for downstream DNA binding. Moreover, we use coarse-grained simulations to investigate the dynamics of the gapped-DNA substrate alone, allowing us to propose a model for specific recognition and binding of gapped DNA by Pol. In the second part of the thesis, we focus on the catalytically important conformational change in Pol that involves the closing of the ‘fingers’ subdomain of the protein around an incoming nucleotide. We make use of the energy decomposition method (EDM) to predict the stability-determining residues for the closed and open conformations of Pol, and test their relevance by site-directed mutagenesis. We apply the unnatural amino acid approach and a single-molecule FRET assay of Pol fingers-closing, to show that substitutions in the stability-determining residues significantly affect the conformational equilibrium of Pol. In the final part of the thesis, we attempt to study Pol in its native environment of the living cell. We make use of the recently developed method of internalization by electroporation, and optimize it for organically labelled proteins. We demonstrate the internalization and single-molecule tracking of Pol, and provide preliminary data of intra-molecular FRET in Pol, both at the single-cell and single-molecule levels. Finally, by measuring smFRET within an internalized gapped-DNA construct, we observe DNA binding and bending by endogenous Pol, confirming the physiological relevance of our in vitro Pol-DNA structure.
6

Investigation of G-quadruplex and Small Molecule Interactions at the Single Molecule Level

Maleki, Parastoo 06 December 2018 (has links)
No description available.
7

Interactions of DNA binding proteins with G-Quadruplex structures at the single molecule level

Ray, Sujay 18 November 2014 (has links)
No description available.
8

Single-molecule approaches reveal outer membrane protein biogenesis dynamics

Svirina, Anna, Chamachi, Neharika, Schlierf, Michael 01 March 2024 (has links)
Outer membrane proteins (OMPs) maintain the viability of Gram-negative bacteria by functioning as receptors, transporters, ion channels, lipases, and porins. Folding and assembly of OMPs involves synchronized action of chaperones and multi-protein machineries which escort the highly hydrophobic polypeptides to their target outer membrane in a folding competent state. Previous studies have identified proteins and their involvement along the OMP biogenesis pathway. Yet, the mechanisms of action and the intriguing ability of all these molecular machines to work without the typical cellular energy source of ATP, but solely based on thermodynamic principles, are still not well understood. Here, we highlight how different single-molecule studies can shed additional light on the mechanisms and kinetics of OMP biogenesis.
9

A Multi-Disciplinary Investigation of Essential DNA Replication Proteins

Gadkari, Varun V. 03 August 2017 (has links)
No description available.

Page generated in 0.2355 seconds